|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static real c_b7 = 1.f;
- static integer c__1 = 1;
- static real c_b10 = -1.f;
-
- /* > \brief \b SORHR_COL */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SORHR_COL + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorhr_c
- ol.f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorhr_c
- ol.f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorhr_c
- ol.f"> */
- /* > [TXT]</a> */
- /* > */
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO ) */
-
- /* INTEGER INFO, LDA, LDT, M, N, NB */
- /* REAL A( LDA, * ), D( * ), T( LDT, * ) */
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns */
- /* > as input, stored in A, and performs Householder Reconstruction (HR), */
- /* > i.e. reconstructs Householder vectors V(i) implicitly representing */
- /* > another M-by-N matrix Q_out, with the property that Q_in = Q_out*S, */
- /* > where S is an N-by-N diagonal matrix with diagonal entries */
- /* > equal to +1 or -1. The Householder vectors (columns V(i) of V) are */
- /* > stored in A on output, and the diagonal entries of S are stored in D. */
- /* > Block reflectors are also returned in T */
- /* > (same output format as SGEQRT). */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix A. M >= N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NB */
- /* > \verbatim */
- /* > NB is INTEGER */
- /* > The column block size to be used in the reconstruction */
- /* > of Householder column vector blocks in the array A and */
- /* > corresponding block reflectors in the array T. NB >= 1. */
- /* > (Note that if NB > N, then N is used instead of NB */
- /* > as the column block size.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > */
- /* > On entry: */
- /* > */
- /* > The array A contains an M-by-N orthonormal matrix Q_in, */
- /* > i.e the columns of A are orthogonal unit vectors. */
- /* > */
- /* > On exit: */
- /* > */
- /* > The elements below the diagonal of A represent the unit */
- /* > lower-trapezoidal matrix V of Householder column vectors */
- /* > V(i). The unit diagonal entries of V are not stored */
- /* > (same format as the output below the diagonal in A from */
- /* > SGEQRT). The matrix T and the matrix V stored on output */
- /* > in A implicitly define Q_out. */
- /* > */
- /* > The elements above the diagonal contain the factor U */
- /* > of the "modified" LU-decomposition: */
- /* > Q_in - ( S ) = V * U */
- /* > ( 0 ) */
- /* > where 0 is a (M-N)-by-(M-N) zero matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] T */
- /* > \verbatim */
- /* > T is REAL array, */
- /* > dimension (LDT, N) */
- /* > */
- /* > Let NOCB = Number_of_output_col_blocks */
- /* > = CEIL(N/NB) */
- /* > */
- /* > On exit, T(1:NB, 1:N) contains NOCB upper-triangular */
- /* > block reflectors used to define Q_out stored in compact */
- /* > form as a sequence of upper-triangular NB-by-NB column */
- /* > blocks (same format as the output T in SGEQRT). */
- /* > The matrix T and the matrix V stored on output in A */
- /* > implicitly define Q_out. NOTE: The lower triangles */
- /* > below the upper-triangular blcoks will be filled with */
- /* > zeros. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. */
- /* > LDT >= f2cmax(1,f2cmin(NB,N)). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension f2cmin(M,N). */
- /* > The elements can be only plus or minus one. */
- /* > */
- /* > D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where */
- /* > 1 <= i <= f2cmin(M,N), and Q_in_i is Q_in after performing */
- /* > i-1 steps of “modified” Gaussian elimination. */
- /* > See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
- /* > */
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The computed M-by-M orthogonal factor Q_out is defined implicitly as */
- /* > a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in */
- /* > the compact WY-representation format in the corresponding blocks of */
- /* > matrices V (stored in A) and T. */
- /* > */
- /* > The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N */
- /* > matrix A contains the column vectors V(i) in NB-size column */
- /* > blocks VB(j). For example, VB(1) contains the columns */
- /* > V(1), V(2), ... V(NB). NOTE: The unit entries on */
- /* > the diagonal of Y are not stored in A. */
- /* > */
- /* > The number of column blocks is */
- /* > */
- /* > NOCB = Number_of_output_col_blocks = CEIL(N/NB) */
- /* > */
- /* > where each block is of order NB except for the last block, which */
- /* > is of order LAST_NB = N - (NOCB-1)*NB. */
- /* > */
- /* > For example, if M=6, N=5 and NB=2, the matrix V is */
- /* > */
- /* > */
- /* > V = ( VB(1), VB(2), VB(3) ) = */
- /* > */
- /* > = ( 1 ) */
- /* > ( v21 1 ) */
- /* > ( v31 v32 1 ) */
- /* > ( v41 v42 v43 1 ) */
- /* > ( v51 v52 v53 v54 1 ) */
- /* > ( v61 v62 v63 v54 v65 ) */
- /* > */
- /* > */
- /* > For each of the column blocks VB(i), an upper-triangular block */
- /* > reflector TB(i) is computed. These blocks are stored as */
- /* > a sequence of upper-triangular column blocks in the NB-by-N */
- /* > matrix T. The size of each TB(i) block is NB-by-NB, except */
- /* > for the last block, whose size is LAST_NB-by-LAST_NB. */
- /* > */
- /* > For example, if M=6, N=5 and NB=2, the matrix T is */
- /* > */
- /* > T = ( TB(1), TB(2), TB(3) ) = */
- /* > */
- /* > = ( t11 t12 t13 t14 t15 ) */
- /* > ( t22 t24 ) */
- /* > */
- /* > */
- /* > The M-by-M factor Q_out is given as a product of NOCB */
- /* > orthogonal M-by-M matrices Q_out(i). */
- /* > */
- /* > Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB), */
- /* > */
- /* > where each matrix Q_out(i) is given by the WY-representation */
- /* > using corresponding blocks from the matrices V and T: */
- /* > */
- /* > Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T, */
- /* > */
- /* > where I is the identity matrix. Here is the formula with matrix */
- /* > dimensions: */
- /* > */
- /* > Q(i){M-by-M} = I{M-by-M} - */
- /* > VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M}, */
- /* > */
- /* > where INB = NB, except for the last block NOCB */
- /* > for which INB=LAST_NB. */
- /* > */
- /* > ===== */
- /* > NOTE: */
- /* > ===== */
- /* > */
- /* > If Q_in is the result of doing a QR factorization */
- /* > B = Q_in * R_in, then: */
- /* > */
- /* > B = (Q_out*S) * R_in = Q_out * (S * R_in) = O_out * R_out. */
- /* > */
- /* > So if one wants to interpret Q_out as the result */
- /* > of the QR factorization of B, then corresponding R_out */
- /* > should be obtained by R_out = S * R_in, i.e. some rows of R_in */
- /* > should be multiplied by -1. */
- /* > */
- /* > For the details of the algorithm, see [1]. */
- /* > */
- /* > [1] "Reconstructing Householder vectors from tall-skinny QR", */
- /* > G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, */
- /* > E. Solomonik, J. Parallel Distrib. Comput., */
- /* > vol. 85, pp. 3-31, 2015. */
- /* > \endverbatim */
- /* > */
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2019 */
-
- /* > \ingroup singleOTHERcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > November 2019, Igor Kozachenko, */
- /* > Computer Science Division, */
- /* > University of California, Berkeley */
- /* > */
- /* > \endverbatim */
-
- /* ===================================================================== */
- /* Subroutine */ void sorhr_col_(integer *m, integer *n, integer *nb, real *a,
- integer *lda, real *t, integer *ldt, real *d__, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- extern /* Subroutine */ void slaorhr_col_getrfnp_(integer *, integer *,
- real *, integer *, real *, integer *);
- integer nplusone, i__, j, iinfo;
- extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
- scopy_(integer *, real *, integer *, real *, integer *), strsm_(
- char *, char *, char *, char *, integer *, integer *, real *,
- real *, integer *, real *, integer *);
- integer jb;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- integer jbtemp1, jbtemp2, jnb;
-
-
- /* -- LAPACK computational routine (version 3.9.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2019 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- --d__;
-
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0 || *n > *m) {
- *info = -2;
- } else if (*nb < 1) {
- *info = -3;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -5;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = f2cmin(*nb,*n);
- if (*ldt < f2cmax(i__1,i__2)) {
- *info = -7;
- }
- }
-
- /* Handle error in the input parameters. */
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SORHR_COL", &i__1, (ftnlen)9);
- return;
- }
-
- /* Quick return if possible */
-
- if (f2cmin(*m,*n) == 0) {
- return;
- }
-
- /* On input, the M-by-N matrix A contains the orthogonal */
- /* M-by-N matrix Q_in. */
-
- /* (1) Compute the unit lower-trapezoidal V (ones on the diagonal */
- /* are not stored) by performing the "modified" LU-decomposition. */
-
- /* Q_in - ( S ) = V * U = ( V1 ) * U, */
- /* ( 0 ) ( V2 ) */
-
- /* where 0 is an (M-N)-by-N zero matrix. */
-
- /* (1-1) Factor V1 and U. */
- slaorhr_col_getrfnp_(n, n, &a[a_offset], lda, &d__[1], &iinfo);
-
- /* (1-2) Solve for V2. */
-
- if (*m > *n) {
- i__1 = *m - *n;
- strsm_("R", "U", "N", "N", &i__1, n, &c_b7, &a[a_offset], lda, &a[*n
- + 1 + a_dim1], lda);
- }
-
- /* (2) Reconstruct the block reflector T stored in T(1:NB, 1:N) */
- /* as a sequence of upper-triangular blocks with NB-size column */
- /* blocking. */
-
- /* Loop over the column blocks of size NB of the array A(1:M,1:N) */
- /* and the array T(1:NB,1:N), JB is the column index of a column */
- /* block, JNB is the column block size at each step JB. */
-
- nplusone = *n + 1;
- i__1 = *n;
- i__2 = *nb;
- for (jb = 1; i__2 < 0 ? jb >= i__1 : jb <= i__1; jb += i__2) {
-
- /* (2-0) Determine the column block size JNB. */
-
- /* Computing MIN */
- i__3 = nplusone - jb;
- jnb = f2cmin(i__3,*nb);
-
- /* (2-1) Copy the upper-triangular part of the current JNB-by-JNB */
- /* diagonal block U(JB) (of the N-by-N matrix U) stored */
- /* in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part */
- /* of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1) */
- /* column-by-column, total JNB*(JNB+1)/2 elements. */
-
- jbtemp1 = jb - 1;
- i__3 = jb + jnb - 1;
- for (j = jb; j <= i__3; ++j) {
- i__4 = j - jbtemp1;
- scopy_(&i__4, &a[jb + j * a_dim1], &c__1, &t[j * t_dim1 + 1], &
- c__1);
- }
-
- /* (2-2) Perform on the upper-triangular part of the current */
- /* JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored */
- /* in T(1:JNB,JB:JB+JNB-1) the following operation in place: */
- /* (-1)*U(JB)*S(JB), i.e the result will be stored in the upper- */
- /* triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication */
- /* of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB */
- /* diagonal block S(JB) of the N-by-N sign matrix S from the */
- /* right means changing the sign of each J-th column of the block */
- /* U(JB) according to the sign of the diagonal element of the block */
- /* S(JB), i.e. S(J,J) that is stored in the array element D(J). */
-
- i__3 = jb + jnb - 1;
- for (j = jb; j <= i__3; ++j) {
- if (d__[j] == 1.f) {
- i__4 = j - jbtemp1;
- sscal_(&i__4, &c_b10, &t[j * t_dim1 + 1], &c__1);
- }
- }
-
- /* (2-3) Perform the triangular solve for the current block */
- /* matrix X(JB): */
-
- /* X(JB) * (A(JB)**T) = B(JB), where: */
-
- /* A(JB)**T is a JNB-by-JNB unit upper-triangular */
- /* coefficient block, and A(JB)=V1(JB), which */
- /* is a JNB-by-JNB unit lower-triangular block */
- /* stored in A(JB:JB+JNB-1,JB:JB+JNB-1). */
- /* The N-by-N matrix V1 is the upper part */
- /* of the M-by-N lower-trapezoidal matrix V */
- /* stored in A(1:M,1:N); */
-
- /* B(JB) is a JNB-by-JNB upper-triangular right-hand */
- /* side block, B(JB) = (-1)*U(JB)*S(JB), and */
- /* B(JB) is stored in T(1:JNB,JB:JB+JNB-1); */
-
- /* X(JB) is a JNB-by-JNB upper-triangular solution */
- /* block, X(JB) is the upper-triangular block */
- /* reflector T(JB), and X(JB) is stored */
- /* in T(1:JNB,JB:JB+JNB-1). */
-
- /* In other words, we perform the triangular solve for the */
- /* upper-triangular block T(JB): */
-
- /* T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB). */
-
- /* Even though the blocks X(JB) and B(JB) are upper- */
- /* triangular, the routine STRSM will access all JNB**2 */
- /* elements of the square T(1:JNB,JB:JB+JNB-1). Therefore, */
- /* we need to set to zero the elements of the block */
- /* T(1:JNB,JB:JB+JNB-1) below the diagonal before the call */
- /* to STRSM. */
-
- /* (2-3a) Set the elements to zero. */
-
- jbtemp2 = jb - 2;
- i__3 = jb + jnb - 2;
- for (j = jb; j <= i__3; ++j) {
- i__4 = *nb;
- for (i__ = j - jbtemp2; i__ <= i__4; ++i__) {
- t[i__ + j * t_dim1] = 0.f;
- }
- }
-
- /* (2-3b) Perform the triangular solve. */
-
- strsm_("R", "L", "T", "U", &jnb, &jnb, &c_b7, &a[jb + jb * a_dim1],
- lda, &t[jb * t_dim1 + 1], ldt);
-
- }
-
- return;
-
- /* End of SORHR_COL */
-
- } /* sorhr_col__ */
|