|
- *> \brief \b SORGRQ
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SORGRQ + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgrq.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgrq.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgrq.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SORGRQ generates an M-by-N real matrix Q with orthonormal rows,
- *> which is defined as the last M rows of a product of K elementary
- *> reflectors of order N
- *>
- *> Q = H(1) H(2) . . . H(k)
- *>
- *> as returned by SGERQF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix Q. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix Q. N >= M.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines the
- *> matrix Q. M >= K >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the (m-k+i)-th row must contain the vector which
- *> defines the elementary reflector H(i), for i = 1,2,...,k, as
- *> returned by SGERQF in the last k rows of its array argument
- *> A.
- *> On exit, the M-by-N matrix Q.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The first dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (K)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by SGERQF.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,M).
- *> For optimum performance LWORK >= M*NB, where NB is the
- *> optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument has an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup ungrq
- *
- * =====================================================================
- SUBROUTINE SORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO
- PARAMETER ( ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IB, II, IINFO, IWS, J, KK, L, LDWORK,
- $ LWKOPT, NB, NBMIN, NX
- * ..
- * .. External Subroutines ..
- EXTERNAL SLARFB, SLARFT, SORGR2, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- REAL SROUNDUP_LWORK
- EXTERNAL ILAENV, SROUNDUP_LWORK
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.M ) THEN
- INFO = -2
- ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -5
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( M.LE.0 ) THEN
- LWKOPT = 1
- ELSE
- NB = ILAENV( 1, 'SORGRQ', ' ', M, N, K, -1 )
- LWKOPT = M*NB
- END IF
- WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
- *
- IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
- INFO = -8
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SORGRQ', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.LE.0 ) THEN
- RETURN
- END IF
- *
- NBMIN = 2
- NX = 0
- IWS = M
- IF( NB.GT.1 .AND. NB.LT.K ) THEN
- *
- * Determine when to cross over from blocked to unblocked code.
- *
- NX = MAX( 0, ILAENV( 3, 'SORGRQ', ' ', M, N, K, -1 ) )
- IF( NX.LT.K ) THEN
- *
- * Determine if workspace is large enough for blocked code.
- *
- LDWORK = M
- IWS = LDWORK*NB
- IF( LWORK.LT.IWS ) THEN
- *
- * Not enough workspace to use optimal NB: reduce NB and
- * determine the minimum value of NB.
- *
- NB = LWORK / LDWORK
- NBMIN = MAX( 2, ILAENV( 2, 'SORGRQ', ' ', M, N, K, -1 ) )
- END IF
- END IF
- END IF
- *
- IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
- *
- * Use blocked code after the first block.
- * The last kk rows are handled by the block method.
- *
- KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
- *
- * Set A(1:m-kk,n-kk+1:n) to zero.
- *
- DO 20 J = N - KK + 1, N
- DO 10 I = 1, M - KK
- A( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- KK = 0
- END IF
- *
- * Use unblocked code for the first or only block.
- *
- CALL SORGR2( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
- *
- IF( KK.GT.0 ) THEN
- *
- * Use blocked code
- *
- DO 50 I = K - KK + 1, K, NB
- IB = MIN( NB, K-I+1 )
- II = M - K + I
- IF( II.GT.1 ) THEN
- *
- * Form the triangular factor of the block reflector
- * H = H(i+ib-1) . . . H(i+1) H(i)
- *
- CALL SLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
- $ A( II, 1 ), LDA, TAU( I ), WORK, LDWORK )
- *
- * Apply H**T to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
- *
- CALL SLARFB( 'Right', 'Transpose', 'Backward', 'Rowwise',
- $ II-1, N-K+I+IB-1, IB, A( II, 1 ), LDA, WORK,
- $ LDWORK, A, LDA, WORK( IB+1 ), LDWORK )
- END IF
- *
- * Apply H**T to columns 1:n-k+i+ib-1 of current block
- *
- CALL SORGR2( IB, N-K+I+IB-1, IB, A( II, 1 ), LDA, TAU( I ),
- $ WORK, IINFO )
- *
- * Set columns n-k+i+ib:n of current block to zero
- *
- DO 40 L = N - K + I + IB, N
- DO 30 J = II, II + IB - 1
- A( J, L ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- 50 CONTINUE
- END IF
- *
- WORK( 1 ) = SROUNDUP_LWORK(IWS)
- RETURN
- *
- * End of SORGRQ
- *
- END
|