|
- *> \brief \b SORGBR
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SORGBR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgbr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgbr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgbr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER VECT
- * INTEGER INFO, K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SORGBR generates one of the real orthogonal matrices Q or P**T
- *> determined by SGEBRD when reducing a real matrix A to bidiagonal
- *> form: A = Q * B * P**T. Q and P**T are defined as products of
- *> elementary reflectors H(i) or G(i) respectively.
- *>
- *> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
- *> is of order M:
- *> if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
- *> columns of Q, where m >= n >= k;
- *> if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
- *> M-by-M matrix.
- *>
- *> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
- *> is of order N:
- *> if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
- *> rows of P**T, where n >= m >= k;
- *> if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
- *> an N-by-N matrix.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] VECT
- *> \verbatim
- *> VECT is CHARACTER*1
- *> Specifies whether the matrix Q or the matrix P**T is
- *> required, as defined in the transformation applied by SGEBRD:
- *> = 'Q': generate Q;
- *> = 'P': generate P**T.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix Q or P**T to be returned.
- *> M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix Q or P**T to be returned.
- *> N >= 0.
- *> If VECT = 'Q', M >= N >= min(M,K);
- *> if VECT = 'P', N >= M >= min(N,K).
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> If VECT = 'Q', the number of columns in the original M-by-K
- *> matrix reduced by SGEBRD.
- *> If VECT = 'P', the number of rows in the original K-by-N
- *> matrix reduced by SGEBRD.
- *> K >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the vectors which define the elementary reflectors,
- *> as returned by SGEBRD.
- *> On exit, the M-by-N matrix Q or P**T.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is REAL array, dimension
- *> (min(M,K)) if VECT = 'Q'
- *> (min(N,K)) if VECT = 'P'
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i) or G(i), which determines Q or P**T, as
- *> returned by SGEBRD in its array argument TAUQ or TAUP.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,min(M,N)).
- *> For optimum performance LWORK >= min(M,N)*NB, where NB
- *> is the optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup ungbr
- *
- * =====================================================================
- SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER VECT
- INTEGER INFO, K, LDA, LWORK, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, WANTQ
- INTEGER I, IINFO, J, LWKOPT, MN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- REAL SROUNDUP_LWORK
- EXTERNAL LSAME, SROUNDUP_LWORK
- * ..
- * .. External Subroutines ..
- EXTERNAL SORGLQ, SORGQR, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- WANTQ = LSAME( VECT, 'Q' )
- MN = MIN( M, N )
- LQUERY = ( LWORK.EQ.-1 )
- IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
- INFO = -1
- ELSE IF( M.LT.0 ) THEN
- INFO = -2
- ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
- $ K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
- $ MIN( N, K ) ) ) ) THEN
- INFO = -3
- ELSE IF( K.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
- INFO = -9
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = 1
- IF( WANTQ ) THEN
- IF( M.GE.K ) THEN
- CALL SORGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
- ELSE
- IF( M.GT.1 ) THEN
- CALL SORGQR( M-1, M-1, M-1, A, LDA, TAU, WORK, -1,
- $ IINFO )
- END IF
- END IF
- ELSE
- IF( K.LT.N ) THEN
- CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
- ELSE
- IF( N.GT.1 ) THEN
- CALL SORGLQ( N-1, N-1, N-1, A, LDA, TAU, WORK, -1,
- $ IINFO )
- END IF
- END IF
- END IF
- LWKOPT = INT( WORK( 1 ) )
- LWKOPT = MAX (LWKOPT, MN)
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SORGBR', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- IF( WANTQ ) THEN
- *
- * Form Q, determined by a call to SGEBRD to reduce an m-by-k
- * matrix
- *
- IF( M.GE.K ) THEN
- *
- * If m >= k, assume m >= n >= k
- *
- CALL SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
- *
- ELSE
- *
- * If m < k, assume m = n
- *
- * Shift the vectors which define the elementary reflectors one
- * column to the right, and set the first row and column of Q
- * to those of the unit matrix
- *
- DO 20 J = M, 2, -1
- A( 1, J ) = ZERO
- DO 10 I = J + 1, M
- A( I, J ) = A( I, J-1 )
- 10 CONTINUE
- 20 CONTINUE
- A( 1, 1 ) = ONE
- DO 30 I = 2, M
- A( I, 1 ) = ZERO
- 30 CONTINUE
- IF( M.GT.1 ) THEN
- *
- * Form Q(2:m,2:m)
- *
- CALL SORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
- $ LWORK, IINFO )
- END IF
- END IF
- ELSE
- *
- * Form P**T, determined by a call to SGEBRD to reduce a k-by-n
- * matrix
- *
- IF( K.LT.N ) THEN
- *
- * If k < n, assume k <= m <= n
- *
- CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
- *
- ELSE
- *
- * If k >= n, assume m = n
- *
- * Shift the vectors which define the elementary reflectors one
- * row downward, and set the first row and column of P**T to
- * those of the unit matrix
- *
- A( 1, 1 ) = ONE
- DO 40 I = 2, N
- A( I, 1 ) = ZERO
- 40 CONTINUE
- DO 60 J = 2, N
- DO 50 I = J - 1, 2, -1
- A( I, J ) = A( I-1, J )
- 50 CONTINUE
- A( 1, J ) = ZERO
- 60 CONTINUE
- IF( N.GT.1 ) THEN
- *
- * Form P**T(2:n,2:n)
- *
- CALL SORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
- $ LWORK, IINFO )
- END IF
- END IF
- END IF
- WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
- RETURN
- *
- * End of SORGBR
- *
- END
|