|
- *> \brief \b SLASD7 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. Used by sbdsdc.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLASD7 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd7.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd7.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd7.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
- * VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
- * PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
- * C, S, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
- * $ NR, SQRE
- * REAL ALPHA, BETA, C, S
- * ..
- * .. Array Arguments ..
- * INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
- * $ IDXQ( * ), PERM( * )
- * REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
- * $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
- * $ ZW( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLASD7 merges the two sets of singular values together into a single
- *> sorted set. Then it tries to deflate the size of the problem. There
- *> are two ways in which deflation can occur: when two or more singular
- *> values are close together or if there is a tiny entry in the Z
- *> vector. For each such occurrence the order of the related
- *> secular equation problem is reduced by one.
- *>
- *> SLASD7 is called from SLASD6.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ICOMPQ
- *> \verbatim
- *> ICOMPQ is INTEGER
- *> Specifies whether singular vectors are to be computed
- *> in compact form, as follows:
- *> = 0: Compute singular values only.
- *> = 1: Compute singular vectors of upper
- *> bidiagonal matrix in compact form.
- *> \endverbatim
- *>
- *> \param[in] NL
- *> \verbatim
- *> NL is INTEGER
- *> The row dimension of the upper block. NL >= 1.
- *> \endverbatim
- *>
- *> \param[in] NR
- *> \verbatim
- *> NR is INTEGER
- *> The row dimension of the lower block. NR >= 1.
- *> \endverbatim
- *>
- *> \param[in] SQRE
- *> \verbatim
- *> SQRE is INTEGER
- *> = 0: the lower block is an NR-by-NR square matrix.
- *> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
- *>
- *> The bidiagonal matrix has
- *> N = NL + NR + 1 rows and
- *> M = N + SQRE >= N columns.
- *> \endverbatim
- *>
- *> \param[out] K
- *> \verbatim
- *> K is INTEGER
- *> Contains the dimension of the non-deflated matrix, this is
- *> the order of the related secular equation. 1 <= K <=N.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension ( N )
- *> On entry D contains the singular values of the two submatrices
- *> to be combined. On exit D contains the trailing (N-K) updated
- *> singular values (those which were deflated) sorted into
- *> increasing order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is REAL array, dimension ( M )
- *> On exit Z contains the updating row vector in the secular
- *> equation.
- *> \endverbatim
- *>
- *> \param[out] ZW
- *> \verbatim
- *> ZW is REAL array, dimension ( M )
- *> Workspace for Z.
- *> \endverbatim
- *>
- *> \param[in,out] VF
- *> \verbatim
- *> VF is REAL array, dimension ( M )
- *> On entry, VF(1:NL+1) contains the first components of all
- *> right singular vectors of the upper block; and VF(NL+2:M)
- *> contains the first components of all right singular vectors
- *> of the lower block. On exit, VF contains the first components
- *> of all right singular vectors of the bidiagonal matrix.
- *> \endverbatim
- *>
- *> \param[out] VFW
- *> \verbatim
- *> VFW is REAL array, dimension ( M )
- *> Workspace for VF.
- *> \endverbatim
- *>
- *> \param[in,out] VL
- *> \verbatim
- *> VL is REAL array, dimension ( M )
- *> On entry, VL(1:NL+1) contains the last components of all
- *> right singular vectors of the upper block; and VL(NL+2:M)
- *> contains the last components of all right singular vectors
- *> of the lower block. On exit, VL contains the last components
- *> of all right singular vectors of the bidiagonal matrix.
- *> \endverbatim
- *>
- *> \param[out] VLW
- *> \verbatim
- *> VLW is REAL array, dimension ( M )
- *> Workspace for VL.
- *> \endverbatim
- *>
- *> \param[in] ALPHA
- *> \verbatim
- *> ALPHA is REAL
- *> Contains the diagonal element associated with the added row.
- *> \endverbatim
- *>
- *> \param[in] BETA
- *> \verbatim
- *> BETA is REAL
- *> Contains the off-diagonal element associated with the added
- *> row.
- *> \endverbatim
- *>
- *> \param[out] DSIGMA
- *> \verbatim
- *> DSIGMA is REAL array, dimension ( N )
- *> Contains a copy of the diagonal elements (K-1 singular values
- *> and one zero) in the secular equation.
- *> \endverbatim
- *>
- *> \param[out] IDX
- *> \verbatim
- *> IDX is INTEGER array, dimension ( N )
- *> This will contain the permutation used to sort the contents of
- *> D into ascending order.
- *> \endverbatim
- *>
- *> \param[out] IDXP
- *> \verbatim
- *> IDXP is INTEGER array, dimension ( N )
- *> This will contain the permutation used to place deflated
- *> values of D at the end of the array. On output IDXP(2:K)
- *> points to the nondeflated D-values and IDXP(K+1:N)
- *> points to the deflated singular values.
- *> \endverbatim
- *>
- *> \param[in] IDXQ
- *> \verbatim
- *> IDXQ is INTEGER array, dimension ( N )
- *> This contains the permutation which separately sorts the two
- *> sub-problems in D into ascending order. Note that entries in
- *> the first half of this permutation must first be moved one
- *> position backward; and entries in the second half
- *> must first have NL+1 added to their values.
- *> \endverbatim
- *>
- *> \param[out] PERM
- *> \verbatim
- *> PERM is INTEGER array, dimension ( N )
- *> The permutations (from deflation and sorting) to be applied
- *> to each singular block. Not referenced if ICOMPQ = 0.
- *> \endverbatim
- *>
- *> \param[out] GIVPTR
- *> \verbatim
- *> GIVPTR is INTEGER
- *> The number of Givens rotations which took place in this
- *> subproblem. Not referenced if ICOMPQ = 0.
- *> \endverbatim
- *>
- *> \param[out] GIVCOL
- *> \verbatim
- *> GIVCOL is INTEGER array, dimension ( LDGCOL, 2 )
- *> Each pair of numbers indicates a pair of columns to take place
- *> in a Givens rotation. Not referenced if ICOMPQ = 0.
- *> \endverbatim
- *>
- *> \param[in] LDGCOL
- *> \verbatim
- *> LDGCOL is INTEGER
- *> The leading dimension of GIVCOL, must be at least N.
- *> \endverbatim
- *>
- *> \param[out] GIVNUM
- *> \verbatim
- *> GIVNUM is REAL array, dimension ( LDGNUM, 2 )
- *> Each number indicates the C or S value to be used in the
- *> corresponding Givens rotation. Not referenced if ICOMPQ = 0.
- *> \endverbatim
- *>
- *> \param[in] LDGNUM
- *> \verbatim
- *> LDGNUM is INTEGER
- *> The leading dimension of GIVNUM, must be at least N.
- *> \endverbatim
- *>
- *> \param[out] C
- *> \verbatim
- *> C is REAL
- *> C contains garbage if SQRE =0 and the C-value of a Givens
- *> rotation related to the right null space if SQRE = 1.
- *> \endverbatim
- *>
- *> \param[out] S
- *> \verbatim
- *> S is REAL
- *> S contains garbage if SQRE =0 and the S-value of a Givens
- *> rotation related to the right null space if SQRE = 1.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup OTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Ming Gu and Huan Ren, Computer Science Division, University of
- *> California at Berkeley, USA
- *>
- * =====================================================================
- SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL,
- $ VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ,
- $ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
- $ C, S, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL,
- $ NR, SQRE
- REAL ALPHA, BETA, C, S
- * ..
- * .. Array Arguments ..
- INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ),
- $ IDXQ( * ), PERM( * )
- REAL D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ),
- $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ),
- $ ZW( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE, TWO, EIGHT
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
- $ EIGHT = 8.0E+0 )
- * ..
- * .. Local Scalars ..
- *
- INTEGER I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M, N,
- $ NLP1, NLP2
- REAL EPS, HLFTOL, TAU, TOL, Z1
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SLAMRG, SROT, XERBLA
- * ..
- * .. External Functions ..
- REAL SLAMCH, SLAPY2
- EXTERNAL SLAMCH, SLAPY2
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- N = NL + NR + 1
- M = N + SQRE
- *
- IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
- INFO = -1
- ELSE IF( NL.LT.1 ) THEN
- INFO = -2
- ELSE IF( NR.LT.1 ) THEN
- INFO = -3
- ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
- INFO = -4
- ELSE IF( LDGCOL.LT.N ) THEN
- INFO = -22
- ELSE IF( LDGNUM.LT.N ) THEN
- INFO = -24
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SLASD7', -INFO )
- RETURN
- END IF
- *
- NLP1 = NL + 1
- NLP2 = NL + 2
- IF( ICOMPQ.EQ.1 ) THEN
- GIVPTR = 0
- END IF
- *
- * Generate the first part of the vector Z and move the singular
- * values in the first part of D one position backward.
- *
- Z1 = ALPHA*VL( NLP1 )
- VL( NLP1 ) = ZERO
- TAU = VF( NLP1 )
- DO 10 I = NL, 1, -1
- Z( I+1 ) = ALPHA*VL( I )
- VL( I ) = ZERO
- VF( I+1 ) = VF( I )
- D( I+1 ) = D( I )
- IDXQ( I+1 ) = IDXQ( I ) + 1
- 10 CONTINUE
- VF( 1 ) = TAU
- *
- * Generate the second part of the vector Z.
- *
- DO 20 I = NLP2, M
- Z( I ) = BETA*VF( I )
- VF( I ) = ZERO
- 20 CONTINUE
- *
- * Sort the singular values into increasing order
- *
- DO 30 I = NLP2, N
- IDXQ( I ) = IDXQ( I ) + NLP1
- 30 CONTINUE
- *
- * DSIGMA, IDXC, IDXC, and ZW are used as storage space.
- *
- DO 40 I = 2, N
- DSIGMA( I ) = D( IDXQ( I ) )
- ZW( I ) = Z( IDXQ( I ) )
- VFW( I ) = VF( IDXQ( I ) )
- VLW( I ) = VL( IDXQ( I ) )
- 40 CONTINUE
- *
- CALL SLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
- *
- DO 50 I = 2, N
- IDXI = 1 + IDX( I )
- D( I ) = DSIGMA( IDXI )
- Z( I ) = ZW( IDXI )
- VF( I ) = VFW( IDXI )
- VL( I ) = VLW( IDXI )
- 50 CONTINUE
- *
- * Calculate the allowable deflation tolerance
- *
- EPS = SLAMCH( 'Epsilon' )
- TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
- TOL = EIGHT*EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
- *
- * There are 2 kinds of deflation -- first a value in the z-vector
- * is small, second two (or more) singular values are very close
- * together (their difference is small).
- *
- * If the value in the z-vector is small, we simply permute the
- * array so that the corresponding singular value is moved to the
- * end.
- *
- * If two values in the D-vector are close, we perform a two-sided
- * rotation designed to make one of the corresponding z-vector
- * entries zero, and then permute the array so that the deflated
- * singular value is moved to the end.
- *
- * If there are multiple singular values then the problem deflates.
- * Here the number of equal singular values are found. As each equal
- * singular value is found, an elementary reflector is computed to
- * rotate the corresponding singular subspace so that the
- * corresponding components of Z are zero in this new basis.
- *
- K = 1
- K2 = N + 1
- DO 60 J = 2, N
- IF( ABS( Z( J ) ).LE.TOL ) THEN
- *
- * Deflate due to small z component.
- *
- K2 = K2 - 1
- IDXP( K2 ) = J
- IF( J.EQ.N )
- $ GO TO 100
- ELSE
- JPREV = J
- GO TO 70
- END IF
- 60 CONTINUE
- 70 CONTINUE
- J = JPREV
- 80 CONTINUE
- J = J + 1
- IF( J.GT.N )
- $ GO TO 90
- IF( ABS( Z( J ) ).LE.TOL ) THEN
- *
- * Deflate due to small z component.
- *
- K2 = K2 - 1
- IDXP( K2 ) = J
- ELSE
- *
- * Check if singular values are close enough to allow deflation.
- *
- IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
- *
- * Deflation is possible.
- *
- S = Z( JPREV )
- C = Z( J )
- *
- * Find sqrt(a**2+b**2) without overflow or
- * destructive underflow.
- *
- TAU = SLAPY2( C, S )
- Z( J ) = TAU
- Z( JPREV ) = ZERO
- C = C / TAU
- S = -S / TAU
- *
- * Record the appropriate Givens rotation
- *
- IF( ICOMPQ.EQ.1 ) THEN
- GIVPTR = GIVPTR + 1
- IDXJP = IDXQ( IDX( JPREV )+1 )
- IDXJ = IDXQ( IDX( J )+1 )
- IF( IDXJP.LE.NLP1 ) THEN
- IDXJP = IDXJP - 1
- END IF
- IF( IDXJ.LE.NLP1 ) THEN
- IDXJ = IDXJ - 1
- END IF
- GIVCOL( GIVPTR, 2 ) = IDXJP
- GIVCOL( GIVPTR, 1 ) = IDXJ
- GIVNUM( GIVPTR, 2 ) = C
- GIVNUM( GIVPTR, 1 ) = S
- END IF
- CALL SROT( 1, VF( JPREV ), 1, VF( J ), 1, C, S )
- CALL SROT( 1, VL( JPREV ), 1, VL( J ), 1, C, S )
- K2 = K2 - 1
- IDXP( K2 ) = JPREV
- JPREV = J
- ELSE
- K = K + 1
- ZW( K ) = Z( JPREV )
- DSIGMA( K ) = D( JPREV )
- IDXP( K ) = JPREV
- JPREV = J
- END IF
- END IF
- GO TO 80
- 90 CONTINUE
- *
- * Record the last singular value.
- *
- K = K + 1
- ZW( K ) = Z( JPREV )
- DSIGMA( K ) = D( JPREV )
- IDXP( K ) = JPREV
- *
- 100 CONTINUE
- *
- * Sort the singular values into DSIGMA. The singular values which
- * were not deflated go into the first K slots of DSIGMA, except
- * that DSIGMA(1) is treated separately.
- *
- DO 110 J = 2, N
- JP = IDXP( J )
- DSIGMA( J ) = D( JP )
- VFW( J ) = VF( JP )
- VLW( J ) = VL( JP )
- 110 CONTINUE
- IF( ICOMPQ.EQ.1 ) THEN
- DO 120 J = 2, N
- JP = IDXP( J )
- PERM( J ) = IDXQ( IDX( JP )+1 )
- IF( PERM( J ).LE.NLP1 ) THEN
- PERM( J ) = PERM( J ) - 1
- END IF
- 120 CONTINUE
- END IF
- *
- * The deflated singular values go back into the last N - K slots of
- * D.
- *
- CALL SCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
- *
- * Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and
- * VL(M).
- *
- DSIGMA( 1 ) = ZERO
- HLFTOL = TOL / TWO
- IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
- $ DSIGMA( 2 ) = HLFTOL
- IF( M.GT.N ) THEN
- Z( 1 ) = SLAPY2( Z1, Z( M ) )
- IF( Z( 1 ).LE.TOL ) THEN
- C = ONE
- S = ZERO
- Z( 1 ) = TOL
- ELSE
- C = Z1 / Z( 1 )
- S = -Z( M ) / Z( 1 )
- END IF
- CALL SROT( 1, VF( M ), 1, VF( 1 ), 1, C, S )
- CALL SROT( 1, VL( M ), 1, VL( 1 ), 1, C, S )
- ELSE
- IF( ABS( Z1 ).LE.TOL ) THEN
- Z( 1 ) = TOL
- ELSE
- Z( 1 ) = Z1
- END IF
- END IF
- *
- * Restore Z, VF, and VL.
- *
- CALL SCOPY( K-1, ZW( 2 ), 1, Z( 2 ), 1 )
- CALL SCOPY( N-1, VFW( 2 ), 1, VF( 2 ), 1 )
- CALL SCOPY( N-1, VLW( 2 ), 1, VL( 2 ), 1 )
- *
- RETURN
- *
- * End of SLASD7
- *
- END
|