|
- *> \brief \b SLARNV returns a vector of random numbers from a uniform or normal distribution.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLARNV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarnv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarnv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarnv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLARNV( IDIST, ISEED, N, X )
- *
- * .. Scalar Arguments ..
- * INTEGER IDIST, N
- * ..
- * .. Array Arguments ..
- * INTEGER ISEED( 4 )
- * REAL X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLARNV returns a vector of n random real numbers from a uniform or
- *> normal distribution.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] IDIST
- *> \verbatim
- *> IDIST is INTEGER
- *> Specifies the distribution of the random numbers:
- *> = 1: uniform (0,1)
- *> = 2: uniform (-1,1)
- *> = 3: normal (0,1)
- *> \endverbatim
- *>
- *> \param[in,out] ISEED
- *> \verbatim
- *> ISEED is INTEGER array, dimension (4)
- *> On entry, the seed of the random number generator; the array
- *> elements must be between 0 and 4095, and ISEED(4) must be
- *> odd.
- *> On exit, the seed is updated.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of random numbers to be generated.
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is REAL array, dimension (N)
- *> The generated random numbers.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup OTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> This routine calls the auxiliary routine SLARUV to generate random
- *> real numbers from a uniform (0,1) distribution, in batches of up to
- *> 128 using vectorisable code. The Box-Muller method is used to
- *> transform numbers from a uniform to a normal distribution.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SLARNV( IDIST, ISEED, N, X )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IDIST, N
- * ..
- * .. Array Arguments ..
- INTEGER ISEED( 4 )
- REAL X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, TWO
- PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0 )
- INTEGER LV
- PARAMETER ( LV = 128 )
- REAL TWOPI
- PARAMETER ( TWOPI = 6.28318530717958647692528676655900576839E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, IL, IL2, IV
- * ..
- * .. Local Arrays ..
- REAL U( LV )
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC COS, LOG, MIN, SQRT
- * ..
- * .. External Subroutines ..
- EXTERNAL SLARUV
- * ..
- * .. Executable Statements ..
- *
- DO 40 IV = 1, N, LV / 2
- IL = MIN( LV / 2, N-IV+1 )
- IF( IDIST.EQ.3 ) THEN
- IL2 = 2*IL
- ELSE
- IL2 = IL
- END IF
- *
- * Call SLARUV to generate IL2 numbers from a uniform (0,1)
- * distribution (IL2 <= LV)
- *
- CALL SLARUV( ISEED, IL2, U )
- *
- IF( IDIST.EQ.1 ) THEN
- *
- * Copy generated numbers
- *
- DO 10 I = 1, IL
- X( IV+I-1 ) = U( I )
- 10 CONTINUE
- ELSE IF( IDIST.EQ.2 ) THEN
- *
- * Convert generated numbers to uniform (-1,1) distribution
- *
- DO 20 I = 1, IL
- X( IV+I-1 ) = TWO*U( I ) - ONE
- 20 CONTINUE
- ELSE IF( IDIST.EQ.3 ) THEN
- *
- * Convert generated numbers to normal (0,1) distribution
- *
- DO 30 I = 1, IL
- X( IV+I-1 ) = SQRT( -TWO*LOG( U( 2*I-1 ) ) )*
- $ COS( TWOPI*U( 2*I ) )
- 30 CONTINUE
- END IF
- 40 CONTINUE
- RETURN
- *
- * End of SLARNV
- *
- END
|