|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static real c_b7 = 0.f;
- static real c_b8 = 1.f;
- static integer c__2 = 2;
- static integer c__1 = 1;
- static integer c__3 = 3;
-
- /* > \brief \b SLAQR5 performs a single small-bulge multi-shift QR sweep. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLAQR5 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr5.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr5.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr5.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, */
- /* SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, */
- /* LDU, NV, WV, LDWV, NH, WH, LDWH ) */
-
- /* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, */
- /* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV */
- /* LOGICAL WANTT, WANTZ */
- /* REAL H( LDH, * ), SI( * ), SR( * ), U( LDU, * ), */
- /* $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ), */
- /* $ Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLAQR5, called by SLAQR0, performs a */
- /* > single small-bulge multi-shift QR sweep. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTT */
- /* > \verbatim */
- /* > WANTT is LOGICAL */
- /* > WANTT = .true. if the quasi-triangular Schur factor */
- /* > is being computed. WANTT is set to .false. otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > WANTZ = .true. if the orthogonal Schur factor is being */
- /* > computed. WANTZ is set to .false. otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KACC22 */
- /* > \verbatim */
- /* > KACC22 is INTEGER with value 0, 1, or 2. */
- /* > Specifies the computation mode of far-from-diagonal */
- /* > orthogonal updates. */
- /* > = 0: SLAQR5 does not accumulate reflections and does not */
- /* > use matrix-matrix multiply to update far-from-diagonal */
- /* > matrix entries. */
- /* > = 1: SLAQR5 accumulates reflections and uses matrix-matrix */
- /* > multiply to update the far-from-diagonal matrix entries. */
- /* > = 2: Same as KACC22 = 1. This option used to enable exploiting */
- /* > the 2-by-2 structure during matrix multiplications, but */
- /* > this is no longer supported. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > N is the order of the Hessenberg matrix H upon which this */
- /* > subroutine operates. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KTOP */
- /* > \verbatim */
- /* > KTOP is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KBOT */
- /* > \verbatim */
- /* > KBOT is INTEGER */
- /* > These are the first and last rows and columns of an */
- /* > isolated diagonal block upon which the QR sweep is to be */
- /* > applied. It is assumed without a check that */
- /* > either KTOP = 1 or H(KTOP,KTOP-1) = 0 */
- /* > and */
- /* > either KBOT = N or H(KBOT+1,KBOT) = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NSHFTS */
- /* > \verbatim */
- /* > NSHFTS is INTEGER */
- /* > NSHFTS gives the number of simultaneous shifts. NSHFTS */
- /* > must be positive and even. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] SR */
- /* > \verbatim */
- /* > SR is REAL array, dimension (NSHFTS) */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] SI */
- /* > \verbatim */
- /* > SI is REAL array, dimension (NSHFTS) */
- /* > SR contains the real parts and SI contains the imaginary */
- /* > parts of the NSHFTS shifts of origin that define the */
- /* > multi-shift QR sweep. On output SR and SI may be */
- /* > reordered. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is REAL array, dimension (LDH,N) */
- /* > On input H contains a Hessenberg matrix. On output a */
- /* > multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
- /* > to the isolated diagonal block in rows and columns KTOP */
- /* > through KBOT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > LDH is the leading dimension of H just as declared in the */
- /* > calling procedure. LDH >= MAX(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILOZ */
- /* > \verbatim */
- /* > ILOZ is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHIZ */
- /* > \verbatim */
- /* > IHIZ is INTEGER */
- /* > Specify the rows of Z to which transformations must be */
- /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is REAL array, dimension (LDZ,IHIZ) */
- /* > If WANTZ = .TRUE., then the QR Sweep orthogonal */
- /* > similarity transformation is accumulated into */
- /* > Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
- /* > If WANTZ = .FALSE., then Z is unreferenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > LDA is the leading dimension of Z just as declared in */
- /* > the calling procedure. LDZ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] V */
- /* > \verbatim */
- /* > V is REAL array, dimension (LDV,NSHFTS/2) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV */
- /* > \verbatim */
- /* > LDV is INTEGER */
- /* > LDV is the leading dimension of V as declared in the */
- /* > calling procedure. LDV >= 3. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is REAL array, dimension (LDU,2*NSHFTS) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > LDU is the leading dimension of U just as declared in the */
- /* > in the calling subroutine. LDU >= 2*NSHFTS. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NV */
- /* > \verbatim */
- /* > NV is INTEGER */
- /* > NV is the number of rows in WV agailable for workspace. */
- /* > NV >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WV */
- /* > \verbatim */
- /* > WV is REAL array, dimension (LDWV,2*NSHFTS) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDWV */
- /* > \verbatim */
- /* > LDWV is INTEGER */
- /* > LDWV is the leading dimension of WV as declared in the */
- /* > in the calling subroutine. LDWV >= NV. */
- /* > \endverbatim */
-
- /* > \param[in] NH */
- /* > \verbatim */
- /* > NH is INTEGER */
- /* > NH is the number of columns in array WH available for */
- /* > workspace. NH >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WH */
- /* > \verbatim */
- /* > WH is REAL array, dimension (LDWH,NH) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDWH */
- /* > \verbatim */
- /* > LDWH is INTEGER */
- /* > Leading dimension of WH just as declared in the */
- /* > calling procedure. LDWH >= 2*NSHFTS. */
- /* > \endverbatim */
- /* > */
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date January 2021 */
-
- /* > \ingroup realOTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Karen Braman and Ralph Byers, Department of Mathematics, */
- /* > University of Kansas, USA */
- /* > */
- /* > Lars Karlsson, Daniel Kressner, and Bruno Lang */
- /* > */
- /* > Thijs Steel, Department of Computer science, */
- /* > KU Leuven, Belgium */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
- /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
- /* > 929--947, 2002. */
- /* > */
- /* > Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed */
- /* > chains of bulges in multishift QR algorithms. */
- /* > ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void slaqr5_(logical *wantt, logical *wantz, integer *kacc22,
- integer *n, integer *ktop, integer *kbot, integer *nshfts, real *sr,
- real *si, real *h__, integer *ldh, integer *iloz, integer *ihiz, real
- *z__, integer *ldz, real *v, integer *ldv, real *u, integer *ldu,
- integer *nv, real *wv, integer *ldwv, integer *nh, real *wh, integer *
- ldwh)
- {
- /* System generated locals */
- integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1,
- wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
- i__4, i__5, i__6, i__7;
- real r__1, r__2, r__3, r__4, r__5;
-
- /* Local variables */
- real beta;
- logical bmp22;
- integer jcol, jlen, jbot, mbot;
- real swap;
- integer jtop, jrow, mtop, i__, j, k, m;
- real alpha;
- logical accum;
- integer ndcol, incol;
- extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, real *, integer *, real *,
- real *, integer *);
- integer krcol, nbmps, i2, k1, i4;
- extern /* Subroutine */ void slaqr1_(integer *, real *, integer *, real *,
- real *, real *, real *, real *);
- real h11, h12, h21, h22;
- integer m22;
- extern /* Subroutine */ void slabad_(real *, real *);
- integer ns, nu;
- extern real slamch_(char *);
- real vt[3], safmin, safmax;
- extern /* Subroutine */ void slarfg_(integer *, real *, real *, integer *,
- real *), slacpy_(char *, integer *, integer *, real *, integer *,
- real *, integer *), slaset_(char *, integer *, integer *,
- real *, real *, real *, integer *);
- real refsum, smlnum, scl;
- integer kdu, kms;
- real ulp, tst1, tst2;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ================================================================ */
-
-
- /* ==== If there are no shifts, then there is nothing to do. ==== */
-
- /* Parameter adjustments */
- --sr;
- --si;
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- wv_dim1 = *ldwv;
- wv_offset = 1 + wv_dim1 * 1;
- wv -= wv_offset;
- wh_dim1 = *ldwh;
- wh_offset = 1 + wh_dim1 * 1;
- wh -= wh_offset;
-
- /* Function Body */
- if (*nshfts < 2) {
- return;
- }
-
- /* ==== If the active block is empty or 1-by-1, then there */
- /* . is nothing to do. ==== */
-
- if (*ktop >= *kbot) {
- return;
- }
-
- /* ==== Shuffle shifts into pairs of real shifts and pairs */
- /* . of complex conjugate shifts assuming complex */
- /* . conjugate shifts are already adjacent to one */
- /* . another. ==== */
-
- i__1 = *nshfts - 2;
- for (i__ = 1; i__ <= i__1; i__ += 2) {
- if (si[i__] != -si[i__ + 1]) {
-
- swap = sr[i__];
- sr[i__] = sr[i__ + 1];
- sr[i__ + 1] = sr[i__ + 2];
- sr[i__ + 2] = swap;
-
- swap = si[i__];
- si[i__] = si[i__ + 1];
- si[i__ + 1] = si[i__ + 2];
- si[i__ + 2] = swap;
- }
- /* L10: */
- }
-
- /* ==== NSHFTS is supposed to be even, but if it is odd, */
- /* . then simply reduce it by one. The shuffle above */
- /* . ensures that the dropped shift is real and that */
- /* . the remaining shifts are paired. ==== */
-
- ns = *nshfts - *nshfts % 2;
-
- /* ==== Machine constants for deflation ==== */
-
- safmin = slamch_("SAFE MINIMUM");
- safmax = 1.f / safmin;
- slabad_(&safmin, &safmax);
- ulp = slamch_("PRECISION");
- smlnum = safmin * ((real) (*n) / ulp);
-
- /* ==== Use accumulated reflections to update far-from-diagonal */
- /* . entries ? ==== */
-
- accum = *kacc22 == 1 || *kacc22 == 2;
-
- /* ==== clear trash ==== */
-
- if (*ktop + 2 <= *kbot) {
- h__[*ktop + 2 + *ktop * h_dim1] = 0.f;
- }
-
- /* ==== NBMPS = number of 2-shift bulges in the chain ==== */
-
- nbmps = ns / 2;
-
- /* ==== KDU = width of slab ==== */
-
- kdu = nbmps << 2;
-
- /* ==== Create and chase chains of NBMPS bulges ==== */
-
- i__1 = *kbot - 2;
- i__2 = nbmps << 1;
- for (incol = *ktop - (nbmps << 1) + 1; i__2 < 0 ? incol >= i__1 : incol <=
- i__1; incol += i__2) {
-
- /* JTOP = Index from which updates from the right start. */
-
- if (accum) {
- jtop = f2cmax(*ktop,incol);
- } else if (*wantt) {
- jtop = 1;
- } else {
- jtop = *ktop;
- }
-
- ndcol = incol + kdu;
- if (accum) {
- slaset_("ALL", &kdu, &kdu, &c_b7, &c_b8, &u[u_offset], ldu);
- }
-
- /* ==== Near-the-diagonal bulge chase. The following loop */
- /* . performs the near-the-diagonal part of a small bulge */
- /* . multi-shift QR sweep. Each 4*NBMPS column diagonal */
- /* . chunk extends from column INCOL to column NDCOL */
- /* . (including both column INCOL and column NDCOL). The */
- /* . following loop chases a 2*NBMPS+1 column long chain of */
- /* . NBMPS bulges 2*NBMPS-1 columns to the right. (INCOL */
- /* . may be less than KTOP and and NDCOL may be greater than */
- /* . KBOT indicating phantom columns from which to chase */
- /* . bulges before they are actually introduced or to which */
- /* . to chase bulges beyond column KBOT.) ==== */
-
- /* Computing MIN */
- i__4 = incol + (nbmps << 1) - 1, i__5 = *kbot - 2;
- i__3 = f2cmin(i__4,i__5);
- for (krcol = incol; krcol <= i__3; ++krcol) {
-
- /* ==== Bulges number MTOP to MBOT are active double implicit */
- /* . shift bulges. There may or may not also be small */
- /* . 2-by-2 bulge, if there is room. The inactive bulges */
- /* . (if any) must wait until the active bulges have moved */
- /* . down the diagonal to make room. The phantom matrix */
- /* . paradigm described above helps keep track. ==== */
-
- /* Computing MAX */
- i__4 = 1, i__5 = (*ktop - krcol) / 2 + 1;
- mtop = f2cmax(i__4,i__5);
- /* Computing MIN */
- i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 2;
- mbot = f2cmin(i__4,i__5);
- m22 = mbot + 1;
- bmp22 = mbot < nbmps && krcol + (m22 - 1 << 1) == *kbot - 2;
-
- /* ==== Generate reflections to chase the chain right */
- /* . one column. (The minimum value of K is KTOP-1.) ==== */
-
- if (bmp22) {
-
- /* ==== Special case: 2-by-2 reflection at bottom treated */
- /* . separately ==== */
-
- k = krcol + (m22 - 1 << 1);
- if (k == *ktop - 1) {
- slaqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &sr[(
- m22 << 1) - 1], &si[(m22 << 1) - 1], &sr[m22 * 2],
- &si[m22 * 2], &v[m22 * v_dim1 + 1]);
- beta = v[m22 * v_dim1 + 1];
- slarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
- * v_dim1 + 1]);
- } else {
- beta = h__[k + 1 + k * h_dim1];
- v[m22 * v_dim1 + 2] = h__[k + 2 + k * h_dim1];
- slarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
- * v_dim1 + 1]);
- h__[k + 1 + k * h_dim1] = beta;
- h__[k + 2 + k * h_dim1] = 0.f;
- }
-
- /* ==== Perform update from right within */
- /* . computational window. ==== */
-
- /* Computing MIN */
- i__5 = *kbot, i__6 = k + 3;
- i__4 = f2cmin(i__5,i__6);
- for (j = jtop; j <= i__4; ++j) {
- refsum = v[m22 * v_dim1 + 1] * (h__[j + (k + 1) * h_dim1]
- + v[m22 * v_dim1 + 2] * h__[j + (k + 2) * h_dim1])
- ;
- h__[j + (k + 1) * h_dim1] -= refsum;
- h__[j + (k + 2) * h_dim1] -= refsum * v[m22 * v_dim1 + 2];
- /* L30: */
- }
-
- /* ==== Perform update from left within */
- /* . computational window. ==== */
-
- if (accum) {
- jbot = f2cmin(ndcol,*kbot);
- } else if (*wantt) {
- jbot = *n;
- } else {
- jbot = *kbot;
- }
- i__4 = jbot;
- for (j = k + 1; j <= i__4; ++j) {
- refsum = v[m22 * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] +
- v[m22 * v_dim1 + 2] * h__[k + 2 + j * h_dim1]);
- h__[k + 1 + j * h_dim1] -= refsum;
- h__[k + 2 + j * h_dim1] -= refsum * v[m22 * v_dim1 + 2];
- /* L40: */
- }
-
- /* ==== The following convergence test requires that */
- /* . the tradition small-compared-to-nearby-diagonals */
- /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
- /* . criteria both be satisfied. The latter improves */
- /* . accuracy in some examples. Falling back on an */
- /* . alternate convergence criterion when TST1 or TST2 */
- /* . is zero (as done here) is traditional but probably */
- /* . unnecessary. ==== */
-
- if (k >= *ktop) {
- if (h__[k + 1 + k * h_dim1] != 0.f) {
- tst1 = (r__1 = h__[k + k * h_dim1], abs(r__1)) + (
- r__2 = h__[k + 1 + (k + 1) * h_dim1], abs(
- r__2));
- if (tst1 == 0.f) {
- if (k >= *ktop + 1) {
- tst1 += (r__1 = h__[k + (k - 1) * h_dim1],
- abs(r__1));
- }
- if (k >= *ktop + 2) {
- tst1 += (r__1 = h__[k + (k - 2) * h_dim1],
- abs(r__1));
- }
- if (k >= *ktop + 3) {
- tst1 += (r__1 = h__[k + (k - 3) * h_dim1],
- abs(r__1));
- }
- if (k <= *kbot - 2) {
- tst1 += (r__1 = h__[k + 2 + (k + 1) * h_dim1],
- abs(r__1));
- }
- if (k <= *kbot - 3) {
- tst1 += (r__1 = h__[k + 3 + (k + 1) * h_dim1],
- abs(r__1));
- }
- if (k <= *kbot - 4) {
- tst1 += (r__1 = h__[k + 4 + (k + 1) * h_dim1],
- abs(r__1));
- }
- }
- /* Computing MAX */
- r__2 = smlnum, r__3 = ulp * tst1;
- if ((r__1 = h__[k + 1 + k * h_dim1], abs(r__1)) <=
- f2cmax(r__2,r__3)) {
- /* Computing MAX */
- r__3 = (r__1 = h__[k + 1 + k * h_dim1], abs(r__1))
- , r__4 = (r__2 = h__[k + (k + 1) * h_dim1]
- , abs(r__2));
- h12 = f2cmax(r__3,r__4);
- /* Computing MIN */
- r__3 = (r__1 = h__[k + 1 + k * h_dim1], abs(r__1))
- , r__4 = (r__2 = h__[k + (k + 1) * h_dim1]
- , abs(r__2));
- h21 = f2cmin(r__3,r__4);
- /* Computing MAX */
- r__3 = (r__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
- r__1)), r__4 = (r__2 = h__[k + k * h_dim1]
- - h__[k + 1 + (k + 1) * h_dim1], abs(
- r__2));
- h11 = f2cmax(r__3,r__4);
- /* Computing MIN */
- r__3 = (r__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
- r__1)), r__4 = (r__2 = h__[k + k * h_dim1]
- - h__[k + 1 + (k + 1) * h_dim1], abs(
- r__2));
- h22 = f2cmin(r__3,r__4);
- scl = h11 + h12;
- tst2 = h22 * (h11 / scl);
-
- /* Computing MAX */
- r__1 = smlnum, r__2 = ulp * tst2;
- if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,
- r__2)) {
- h__[k + 1 + k * h_dim1] = 0.f;
- }
- }
- }
- }
-
- /* ==== Accumulate orthogonal transformations. ==== */
-
- if (accum) {
- kms = k - incol;
- /* Computing MAX */
- i__4 = 1, i__5 = *ktop - incol;
- i__6 = kdu;
- for (j = f2cmax(i__4,i__5); j <= i__6; ++j) {
- refsum = v[m22 * v_dim1 + 1] * (u[j + (kms + 1) *
- u_dim1] + v[m22 * v_dim1 + 2] * u[j + (kms +
- 2) * u_dim1]);
- u[j + (kms + 1) * u_dim1] -= refsum;
- u[j + (kms + 2) * u_dim1] -= refsum * v[m22 * v_dim1
- + 2];
- /* L50: */
- }
- } else if (*wantz) {
- i__6 = *ihiz;
- for (j = *iloz; j <= i__6; ++j) {
- refsum = v[m22 * v_dim1 + 1] * (z__[j + (k + 1) *
- z_dim1] + v[m22 * v_dim1 + 2] * z__[j + (k +
- 2) * z_dim1]);
- z__[j + (k + 1) * z_dim1] -= refsum;
- z__[j + (k + 2) * z_dim1] -= refsum * v[m22 * v_dim1
- + 2];
- /* L60: */
- }
- }
- }
-
- /* ==== Normal case: Chain of 3-by-3 reflections ==== */
-
- i__6 = mtop;
- for (m = mbot; m >= i__6; --m) {
- k = krcol + (m - 1 << 1);
- if (k == *ktop - 1) {
- slaqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &sr[(m
- << 1) - 1], &si[(m << 1) - 1], &sr[m * 2], &si[m *
- 2], &v[m * v_dim1 + 1]);
- alpha = v[m * v_dim1 + 1];
- slarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m *
- v_dim1 + 1]);
- } else {
-
- /* ==== Perform delayed transformation of row below */
- /* . Mth bulge. Exploit fact that first two elements */
- /* . of row are actually zero. ==== */
-
- refsum = v[m * v_dim1 + 1] * v[m * v_dim1 + 3] * h__[k +
- 3 + (k + 2) * h_dim1];
- h__[k + 3 + k * h_dim1] = -refsum;
- h__[k + 3 + (k + 1) * h_dim1] = -refsum * v[m * v_dim1 +
- 2];
- h__[k + 3 + (k + 2) * h_dim1] -= refsum * v[m * v_dim1 +
- 3];
-
- /* ==== Calculate reflection to move */
- /* . Mth bulge one step. ==== */
-
- beta = h__[k + 1 + k * h_dim1];
- v[m * v_dim1 + 2] = h__[k + 2 + k * h_dim1];
- v[m * v_dim1 + 3] = h__[k + 3 + k * h_dim1];
- slarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m *
- v_dim1 + 1]);
-
- /* ==== A Bulge may collapse because of vigilant */
- /* . deflation or destructive underflow. In the */
- /* . underflow case, try the two-small-subdiagonals */
- /* . trick to try to reinflate the bulge. ==== */
-
- if (h__[k + 3 + k * h_dim1] != 0.f || h__[k + 3 + (k + 1)
- * h_dim1] != 0.f || h__[k + 3 + (k + 2) * h_dim1]
- == 0.f) {
-
- /* ==== Typical case: not collapsed (yet). ==== */
-
- h__[k + 1 + k * h_dim1] = beta;
- h__[k + 2 + k * h_dim1] = 0.f;
- h__[k + 3 + k * h_dim1] = 0.f;
- } else {
-
- /* ==== Atypical case: collapsed. Attempt to */
- /* . reintroduce ignoring H(K+1,K) and H(K+2,K). */
- /* . If the fill resulting from the new */
- /* . reflector is too large, then abandon it. */
- /* . Otherwise, use the new one. ==== */
-
- slaqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
- sr[(m << 1) - 1], &si[(m << 1) - 1], &sr[m *
- 2], &si[m * 2], vt);
- alpha = vt[0];
- slarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
- refsum = vt[0] * (h__[k + 1 + k * h_dim1] + vt[1] *
- h__[k + 2 + k * h_dim1]);
-
- if ((r__1 = h__[k + 2 + k * h_dim1] - refsum * vt[1],
- abs(r__1)) + (r__2 = refsum * vt[2], abs(r__2)
- ) > ulp * ((r__3 = h__[k + k * h_dim1], abs(
- r__3)) + (r__4 = h__[k + 1 + (k + 1) * h_dim1]
- , abs(r__4)) + (r__5 = h__[k + 2 + (k + 2) *
- h_dim1], abs(r__5)))) {
-
- /* ==== Starting a new bulge here would */
- /* . create non-negligible fill. Use */
- /* . the old one with trepidation. ==== */
-
- h__[k + 1 + k * h_dim1] = beta;
- h__[k + 2 + k * h_dim1] = 0.f;
- h__[k + 3 + k * h_dim1] = 0.f;
- } else {
-
- /* ==== Starting a new bulge here would */
- /* . create only negligible fill. */
- /* . Replace the old reflector with */
- /* . the new one. ==== */
-
- h__[k + 1 + k * h_dim1] -= refsum;
- h__[k + 2 + k * h_dim1] = 0.f;
- h__[k + 3 + k * h_dim1] = 0.f;
- v[m * v_dim1 + 1] = vt[0];
- v[m * v_dim1 + 2] = vt[1];
- v[m * v_dim1 + 3] = vt[2];
- }
- }
- }
-
- /* ==== Apply reflection from the right and */
- /* . the first column of update from the left. */
- /* . These updates are required for the vigilant */
- /* . deflation check. We still delay most of the */
- /* . updates from the left for efficiency. ==== */
-
- /* Computing MIN */
- i__5 = *kbot, i__7 = k + 3;
- i__4 = f2cmin(i__5,i__7);
- for (j = jtop; j <= i__4; ++j) {
- refsum = v[m * v_dim1 + 1] * (h__[j + (k + 1) * h_dim1] +
- v[m * v_dim1 + 2] * h__[j + (k + 2) * h_dim1] + v[
- m * v_dim1 + 3] * h__[j + (k + 3) * h_dim1]);
- h__[j + (k + 1) * h_dim1] -= refsum;
- h__[j + (k + 2) * h_dim1] -= refsum * v[m * v_dim1 + 2];
- h__[j + (k + 3) * h_dim1] -= refsum * v[m * v_dim1 + 3];
- /* L70: */
- }
-
- /* ==== Perform update from left for subsequent */
- /* . column. ==== */
-
- refsum = v[m * v_dim1 + 1] * (h__[k + 1 + (k + 1) * h_dim1] +
- v[m * v_dim1 + 2] * h__[k + 2 + (k + 1) * h_dim1] + v[
- m * v_dim1 + 3] * h__[k + 3 + (k + 1) * h_dim1]);
- h__[k + 1 + (k + 1) * h_dim1] -= refsum;
- h__[k + 2 + (k + 1) * h_dim1] -= refsum * v[m * v_dim1 + 2];
- h__[k + 3 + (k + 1) * h_dim1] -= refsum * v[m * v_dim1 + 3];
-
- /* ==== The following convergence test requires that */
- /* . the tradition small-compared-to-nearby-diagonals */
- /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
- /* . criteria both be satisfied. The latter improves */
- /* . accuracy in some examples. Falling back on an */
- /* . alternate convergence criterion when TST1 or TST2 */
- /* . is zero (as done here) is traditional but probably */
- /* . unnecessary. ==== */
-
- if (k < *ktop) {
- goto L880;
- }
- /* $ CALL MYCYCLE */
- if (h__[k + 1 + k * h_dim1] != 0.f) {
- tst1 = (r__1 = h__[k + k * h_dim1], abs(r__1)) + (r__2 =
- h__[k + 1 + (k + 1) * h_dim1], abs(r__2));
- if (tst1 == 0.f) {
- if (k >= *ktop + 1) {
- tst1 += (r__1 = h__[k + (k - 1) * h_dim1], abs(
- r__1));
- }
- if (k >= *ktop + 2) {
- tst1 += (r__1 = h__[k + (k - 2) * h_dim1], abs(
- r__1));
- }
- if (k >= *ktop + 3) {
- tst1 += (r__1 = h__[k + (k - 3) * h_dim1], abs(
- r__1));
- }
- if (k <= *kbot - 2) {
- tst1 += (r__1 = h__[k + 2 + (k + 1) * h_dim1],
- abs(r__1));
- }
- if (k <= *kbot - 3) {
- tst1 += (r__1 = h__[k + 3 + (k + 1) * h_dim1],
- abs(r__1));
- }
- if (k <= *kbot - 4) {
- tst1 += (r__1 = h__[k + 4 + (k + 1) * h_dim1],
- abs(r__1));
- }
- }
- /* Computing MAX */
- r__2 = smlnum, r__3 = ulp * tst1;
- if ((r__1 = h__[k + 1 + k * h_dim1], abs(r__1)) <= f2cmax(
- r__2,r__3)) {
- /* Computing MAX */
- r__3 = (r__1 = h__[k + 1 + k * h_dim1], abs(r__1)),
- r__4 = (r__2 = h__[k + (k + 1) * h_dim1], abs(
- r__2));
- h12 = f2cmax(r__3,r__4);
- /* Computing MIN */
- r__3 = (r__1 = h__[k + 1 + k * h_dim1], abs(r__1)),
- r__4 = (r__2 = h__[k + (k + 1) * h_dim1], abs(
- r__2));
- h21 = f2cmin(r__3,r__4);
- /* Computing MAX */
- r__3 = (r__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
- r__1)), r__4 = (r__2 = h__[k + k * h_dim1] -
- h__[k + 1 + (k + 1) * h_dim1], abs(r__2));
- h11 = f2cmax(r__3,r__4);
- /* Computing MIN */
- r__3 = (r__1 = h__[k + 1 + (k + 1) * h_dim1], abs(
- r__1)), r__4 = (r__2 = h__[k + k * h_dim1] -
- h__[k + 1 + (k + 1) * h_dim1], abs(r__2));
- h22 = f2cmin(r__3,r__4);
- scl = h11 + h12;
- tst2 = h22 * (h11 / scl);
-
- /* Computing MAX */
- r__1 = smlnum, r__2 = ulp * tst2;
- if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,r__2)
- ) {
- h__[k + 1 + k * h_dim1] = 0.f;
- }
- }
- }
- L880:
- /* L80: */
- ;
- }
-
- /* ==== Multiply H by reflections from the left ==== */
-
- if (accum) {
- jbot = f2cmin(ndcol,*kbot);
- } else if (*wantt) {
- jbot = *n;
- } else {
- jbot = *kbot;
- }
-
- i__6 = mtop;
- for (m = mbot; m >= i__6; --m) {
- k = krcol + (m - 1 << 1);
- /* Computing MAX */
- i__4 = *ktop, i__5 = krcol + (m << 1);
- i__7 = jbot;
- for (j = f2cmax(i__4,i__5); j <= i__7; ++j) {
- refsum = v[m * v_dim1 + 1] * (h__[k + 1 + j * h_dim1] + v[
- m * v_dim1 + 2] * h__[k + 2 + j * h_dim1] + v[m *
- v_dim1 + 3] * h__[k + 3 + j * h_dim1]);
- h__[k + 1 + j * h_dim1] -= refsum;
- h__[k + 2 + j * h_dim1] -= refsum * v[m * v_dim1 + 2];
- h__[k + 3 + j * h_dim1] -= refsum * v[m * v_dim1 + 3];
- /* L90: */
- }
- /* L100: */
- }
-
- /* ==== Accumulate orthogonal transformations. ==== */
-
- if (accum) {
-
- /* ==== Accumulate U. (If needed, update Z later */
- /* . with an efficient matrix-matrix */
- /* . multiply.) ==== */
-
- i__6 = mtop;
- for (m = mbot; m >= i__6; --m) {
- k = krcol + (m - 1 << 1);
- kms = k - incol;
- /* Computing MAX */
- i__7 = 1, i__4 = *ktop - incol;
- i2 = f2cmax(i__7,i__4);
- /* Computing MAX */
- i__7 = i2, i__4 = kms - (krcol - incol) + 1;
- i2 = f2cmax(i__7,i__4);
- /* Computing MIN */
- i__7 = kdu, i__4 = krcol + (mbot - 1 << 1) - incol + 5;
- i4 = f2cmin(i__7,i__4);
- i__7 = i4;
- for (j = i2; j <= i__7; ++j) {
- refsum = v[m * v_dim1 + 1] * (u[j + (kms + 1) *
- u_dim1] + v[m * v_dim1 + 2] * u[j + (kms + 2)
- * u_dim1] + v[m * v_dim1 + 3] * u[j + (kms +
- 3) * u_dim1]);
- u[j + (kms + 1) * u_dim1] -= refsum;
- u[j + (kms + 2) * u_dim1] -= refsum * v[m * v_dim1 +
- 2];
- u[j + (kms + 3) * u_dim1] -= refsum * v[m * v_dim1 +
- 3];
- /* L110: */
- }
- /* L120: */
- }
- } else if (*wantz) {
-
- /* ==== U is not accumulated, so update Z */
- /* . now by multiplying by reflections */
- /* . from the right. ==== */
-
- i__6 = mtop;
- for (m = mbot; m >= i__6; --m) {
- k = krcol + (m - 1 << 1);
- i__7 = *ihiz;
- for (j = *iloz; j <= i__7; ++j) {
- refsum = v[m * v_dim1 + 1] * (z__[j + (k + 1) *
- z_dim1] + v[m * v_dim1 + 2] * z__[j + (k + 2)
- * z_dim1] + v[m * v_dim1 + 3] * z__[j + (k +
- 3) * z_dim1]);
- z__[j + (k + 1) * z_dim1] -= refsum;
- z__[j + (k + 2) * z_dim1] -= refsum * v[m * v_dim1 +
- 2];
- z__[j + (k + 3) * z_dim1] -= refsum * v[m * v_dim1 +
- 3];
- /* L130: */
- }
- /* L140: */
- }
- }
-
- /* ==== End of near-the-diagonal bulge chase. ==== */
-
- /* L145: */
- }
-
- /* ==== Use U (if accumulated) to update far-from-diagonal */
- /* . entries in H. If required, use U to update Z as */
- /* . well. ==== */
-
- if (accum) {
- if (*wantt) {
- jtop = 1;
- jbot = *n;
- } else {
- jtop = *ktop;
- jbot = *kbot;
- }
- /* Computing MAX */
- i__3 = 1, i__6 = *ktop - incol;
- k1 = f2cmax(i__3,i__6);
- /* Computing MAX */
- i__3 = 0, i__6 = ndcol - *kbot;
- nu = kdu - f2cmax(i__3,i__6) - k1 + 1;
-
- /* ==== Horizontal Multiply ==== */
-
- i__3 = jbot;
- i__6 = *nh;
- for (jcol = f2cmin(ndcol,*kbot) + 1; i__6 < 0 ? jcol >= i__3 : jcol
- <= i__3; jcol += i__6) {
- /* Computing MIN */
- i__7 = *nh, i__4 = jbot - jcol + 1;
- jlen = f2cmin(i__7,i__4);
- sgemm_("C", "N", &nu, &jlen, &nu, &c_b8, &u[k1 + k1 * u_dim1],
- ldu, &h__[incol + k1 + jcol * h_dim1], ldh, &c_b7, &
- wh[wh_offset], ldwh);
- slacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[incol +
- k1 + jcol * h_dim1], ldh);
- /* L150: */
- }
-
- /* ==== Vertical multiply ==== */
-
- i__6 = f2cmax(*ktop,incol) - 1;
- i__3 = *nv;
- for (jrow = jtop; i__3 < 0 ? jrow >= i__6 : jrow <= i__6; jrow +=
- i__3) {
- /* Computing MIN */
- i__7 = *nv, i__4 = f2cmax(*ktop,incol) - jrow;
- jlen = f2cmin(i__7,i__4);
- sgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &h__[jrow + (incol +
- k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], ldu, &c_b7,
- &wv[wv_offset], ldwv);
- slacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[jrow + (
- incol + k1) * h_dim1], ldh);
- /* L160: */
- }
-
- /* ==== Z multiply (also vertical) ==== */
-
- if (*wantz) {
- i__3 = *ihiz;
- i__6 = *nv;
- for (jrow = *iloz; i__6 < 0 ? jrow >= i__3 : jrow <= i__3;
- jrow += i__6) {
- /* Computing MIN */
- i__7 = *nv, i__4 = *ihiz - jrow + 1;
- jlen = f2cmin(i__7,i__4);
- sgemm_("N", "N", &jlen, &nu, &nu, &c_b8, &z__[jrow + (
- incol + k1) * z_dim1], ldz, &u[k1 + k1 * u_dim1],
- ldu, &c_b7, &wv[wv_offset], ldwv);
- slacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
- jrow + (incol + k1) * z_dim1], ldz);
- /* L170: */
- }
- }
- }
- /* L180: */
- }
-
- /* ==== End of SLAQR5 ==== */
-
- return;
- } /* slaqr5_ */
|