|
- *> \brief \b SLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLAQR4 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr4.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr4.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr4.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
- * ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
- * LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- * REAL H( LDH, * ), WI( * ), WORK( * ), WR( * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAQR4 implements one level of recursion for SLAQR0.
- *> It is a complete implementation of the small bulge multi-shift
- *> QR algorithm. It may be called by SLAQR0 and, for large enough
- *> deflation window size, it may be called by SLAQR3. This
- *> subroutine is identical to SLAQR0 except that it calls SLAQR2
- *> instead of SLAQR3.
- *>
- *> SLAQR4 computes the eigenvalues of a Hessenberg matrix H
- *> and, optionally, the matrices T and Z from the Schur decomposition
- *> H = Z T Z**T, where T is an upper quasi-triangular matrix (the
- *> Schur form), and Z is the orthogonal matrix of Schur vectors.
- *>
- *> Optionally Z may be postmultiplied into an input orthogonal
- *> matrix Q so that this routine can give the Schur factorization
- *> of a matrix A which has been reduced to the Hessenberg form H
- *> by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTT
- *> \verbatim
- *> WANTT is LOGICAL
- *> = .TRUE. : the full Schur form T is required;
- *> = .FALSE.: only eigenvalues are required.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is LOGICAL
- *> = .TRUE. : the matrix of Schur vectors Z is required;
- *> = .FALSE.: Schur vectors are not required.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix H. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ILO
- *> \verbatim
- *> ILO is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHI
- *> \verbatim
- *> IHI is INTEGER
- *> It is assumed that H is already upper triangular in rows
- *> and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
- *> H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
- *> previous call to SGEBAL, and then passed to SGEHRD when the
- *> matrix output by SGEBAL is reduced to Hessenberg form.
- *> Otherwise, ILO and IHI should be set to 1 and N,
- *> respectively. If N > 0, then 1 <= ILO <= IHI <= N.
- *> If N = 0, then ILO = 1 and IHI = 0.
- *> \endverbatim
- *>
- *> \param[in,out] H
- *> \verbatim
- *> H is REAL array, dimension (LDH,N)
- *> On entry, the upper Hessenberg matrix H.
- *> On exit, if INFO = 0 and WANTT is .TRUE., then H contains
- *> the upper quasi-triangular matrix T from the Schur
- *> decomposition (the Schur form); 2-by-2 diagonal blocks
- *> (corresponding to complex conjugate pairs of eigenvalues)
- *> are returned in standard form, with H(i,i) = H(i+1,i+1)
- *> and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
- *> .FALSE., then the contents of H are unspecified on exit.
- *> (The output value of H when INFO > 0 is given under the
- *> description of INFO below.)
- *>
- *> This subroutine may explicitly set H(i,j) = 0 for i > j and
- *> j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
- *> \endverbatim
- *>
- *> \param[in] LDH
- *> \verbatim
- *> LDH is INTEGER
- *> The leading dimension of the array H. LDH >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WR
- *> \verbatim
- *> WR is REAL array, dimension (IHI)
- *> \endverbatim
- *>
- *> \param[out] WI
- *> \verbatim
- *> WI is REAL array, dimension (IHI)
- *> The real and imaginary parts, respectively, of the computed
- *> eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
- *> and WI(ILO:IHI). If two eigenvalues are computed as a
- *> complex conjugate pair, they are stored in consecutive
- *> elements of WR and WI, say the i-th and (i+1)th, with
- *> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
- *> the eigenvalues are stored in the same order as on the
- *> diagonal of the Schur form returned in H, with
- *> WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
- *> block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
- *> WI(i+1) = -WI(i).
- *> \endverbatim
- *>
- *> \param[in] ILOZ
- *> \verbatim
- *> ILOZ is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHIZ
- *> \verbatim
- *> IHIZ is INTEGER
- *> Specify the rows of Z to which transformations must be
- *> applied if WANTZ is .TRUE..
- *> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDZ,IHI)
- *> If WANTZ is .FALSE., then Z is not referenced.
- *> If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
- *> replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
- *> orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
- *> (The output value of Z when INFO > 0 is given under
- *> the description of INFO below.)
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. if WANTZ is .TRUE.
- *> then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension LWORK
- *> On exit, if LWORK = -1, WORK(1) returns an estimate of
- *> the optimal value for LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= max(1,N)
- *> is sufficient, but LWORK typically as large as 6*N may
- *> be required for optimal performance. A workspace query
- *> to determine the optimal workspace size is recommended.
- *>
- *> If LWORK = -1, then SLAQR4 does a workspace query.
- *> In this case, SLAQR4 checks the input parameters and
- *> estimates the optimal workspace size for the given
- *> values of N, ILO and IHI. The estimate is returned
- *> in WORK(1). No error message related to LWORK is
- *> issued by XERBLA. Neither H nor Z are accessed.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> > 0: if INFO = i, SLAQR4 failed to compute all of
- *> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
- *> and WI contain those eigenvalues which have been
- *> successfully computed. (Failures are rare.)
- *>
- *> If INFO > 0 and WANT is .FALSE., then on exit,
- *> the remaining unconverged eigenvalues are the eigen-
- *> values of the upper Hessenberg matrix rows and
- *> columns ILO through INFO of the final, output
- *> value of H.
- *>
- *> If INFO > 0 and WANTT is .TRUE., then on exit
- *>
- *> (*) (initial value of H)*U = U*(final value of H)
- *>
- *> where U is a orthogonal matrix. The final
- *> value of H is upper Hessenberg and triangular in
- *> rows and columns INFO+1 through IHI.
- *>
- *> If INFO > 0 and WANTZ is .TRUE., then on exit
- *>
- *> (final value of Z(ILO:IHI,ILOZ:IHIZ)
- *> = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
- *>
- *> where U is the orthogonal matrix in (*) (regard-
- *> less of the value of WANTT.)
- *>
- *> If INFO > 0 and WANTZ is .FALSE., then Z is not
- *> accessed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup laqr4
- *
- *> \par Contributors:
- * ==================
- *>
- *> Karen Braman and Ralph Byers, Department of Mathematics,
- *> University of Kansas, USA
- *
- *> \par References:
- * ================
- *>
- *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
- *> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
- *> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
- *> 929--947, 2002.
- *> \n
- *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
- *> Algorithm Part II: Aggressive Early Deflation, SIAM Journal
- *> of Matrix Analysis, volume 23, pages 948--973, 2002.
- *>
- * =====================================================================
- SUBROUTINE SLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
- $ ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
- LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- REAL H( LDH, * ), WI( * ), WORK( * ), WR( * ),
- $ Z( LDZ, * )
- * ..
- *
- * ================================================================
- *
- * .. Parameters ..
- *
- * ==== Matrices of order NTINY or smaller must be processed by
- * . SLAHQR because of insufficient subdiagonal scratch space.
- * . (This is a hard limit.) ====
- INTEGER NTINY
- PARAMETER ( NTINY = 15 )
- *
- * ==== Exceptional deflation windows: try to cure rare
- * . slow convergence by varying the size of the
- * . deflation window after KEXNW iterations. ====
- INTEGER KEXNW
- PARAMETER ( KEXNW = 5 )
- *
- * ==== Exceptional shifts: try to cure rare slow convergence
- * . with ad-hoc exceptional shifts every KEXSH iterations.
- * . ====
- INTEGER KEXSH
- PARAMETER ( KEXSH = 6 )
- *
- * ==== The constants WILK1 and WILK2 are used to form the
- * . exceptional shifts. ====
- REAL WILK1, WILK2
- PARAMETER ( WILK1 = 0.75e0, WILK2 = -0.4375e0 )
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0e0, ONE = 1.0e0 )
- * ..
- * .. Local Scalars ..
- REAL AA, BB, CC, CS, DD, SN, SS, SWAP
- INTEGER I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
- $ KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
- $ LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
- $ NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
- LOGICAL SORTED
- CHARACTER JBCMPZ*2
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- REAL SROUNDUP_LWORK
- EXTERNAL ILAENV, SROUNDUP_LWORK
- * ..
- * .. Local Arrays ..
- REAL ZDUM( 1, 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL SLACPY, SLAHQR, SLANV2, SLAQR2, SLAQR5
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, INT, MAX, MIN, MOD
- * ..
- * .. Executable Statements ..
- INFO = 0
- *
- * ==== Quick return for N = 0: nothing to do. ====
- *
- IF( N.EQ.0 ) THEN
- WORK( 1 ) = ONE
- RETURN
- END IF
- *
- IF( N.LE.NTINY ) THEN
- *
- * ==== Tiny matrices must use SLAHQR. ====
- *
- LWKOPT = 1
- IF( LWORK.NE.-1 )
- $ CALL SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
- $ ILOZ, IHIZ, Z, LDZ, INFO )
- ELSE
- *
- * ==== Use small bulge multi-shift QR with aggressive early
- * . deflation on larger-than-tiny matrices. ====
- *
- * ==== Hope for the best. ====
- *
- INFO = 0
- *
- * ==== Set up job flags for ILAENV. ====
- *
- IF( WANTT ) THEN
- JBCMPZ( 1: 1 ) = 'S'
- ELSE
- JBCMPZ( 1: 1 ) = 'E'
- END IF
- IF( WANTZ ) THEN
- JBCMPZ( 2: 2 ) = 'V'
- ELSE
- JBCMPZ( 2: 2 ) = 'N'
- END IF
- *
- * ==== NWR = recommended deflation window size. At this
- * . point, N .GT. NTINY = 15, so there is enough
- * . subdiagonal workspace for NWR.GE.2 as required.
- * . (In fact, there is enough subdiagonal space for
- * . NWR.GE.4.) ====
- *
- NWR = ILAENV( 13, 'SLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
- NWR = MAX( 2, NWR )
- NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
- *
- * ==== NSR = recommended number of simultaneous shifts.
- * . At this point N .GT. NTINY = 15, so there is at
- * . enough subdiagonal workspace for NSR to be even
- * . and greater than or equal to two as required. ====
- *
- NSR = ILAENV( 15, 'SLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
- NSR = MIN( NSR, ( N-3 ) / 6, IHI-ILO )
- NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
- *
- * ==== Estimate optimal workspace ====
- *
- * ==== Workspace query call to SLAQR2 ====
- *
- CALL SLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
- $ IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
- $ N, H, LDH, WORK, -1 )
- *
- * ==== Optimal workspace = MAX(SLAQR5, SLAQR2) ====
- *
- LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
- *
- * ==== Quick return in case of workspace query. ====
- *
- IF( LWORK.EQ.-1 ) THEN
- WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
- RETURN
- END IF
- *
- * ==== SLAHQR/SLAQR0 crossover point ====
- *
- NMIN = ILAENV( 12, 'SLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
- NMIN = MAX( NTINY, NMIN )
- *
- * ==== Nibble crossover point ====
- *
- NIBBLE = ILAENV( 14, 'SLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
- NIBBLE = MAX( 0, NIBBLE )
- *
- * ==== Accumulate reflections during ttswp? Use block
- * . 2-by-2 structure during matrix-matrix multiply? ====
- *
- KACC22 = ILAENV( 16, 'SLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
- KACC22 = MAX( 0, KACC22 )
- KACC22 = MIN( 2, KACC22 )
- *
- * ==== NWMAX = the largest possible deflation window for
- * . which there is sufficient workspace. ====
- *
- NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
- NW = NWMAX
- *
- * ==== NSMAX = the Largest number of simultaneous shifts
- * . for which there is sufficient workspace. ====
- *
- NSMAX = MIN( ( N-3 ) / 6, 2*LWORK / 3 )
- NSMAX = NSMAX - MOD( NSMAX, 2 )
- *
- * ==== NDFL: an iteration count restarted at deflation. ====
- *
- NDFL = 1
- *
- * ==== ITMAX = iteration limit ====
- *
- ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
- *
- * ==== Last row and column in the active block ====
- *
- KBOT = IHI
- *
- * ==== Main Loop ====
- *
- DO 80 IT = 1, ITMAX
- *
- * ==== Done when KBOT falls below ILO ====
- *
- IF( KBOT.LT.ILO )
- $ GO TO 90
- *
- * ==== Locate active block ====
- *
- DO 10 K = KBOT, ILO + 1, -1
- IF( H( K, K-1 ).EQ.ZERO )
- $ GO TO 20
- 10 CONTINUE
- K = ILO
- 20 CONTINUE
- KTOP = K
- *
- * ==== Select deflation window size:
- * . Typical Case:
- * . If possible and advisable, nibble the entire
- * . active block. If not, use size MIN(NWR,NWMAX)
- * . or MIN(NWR+1,NWMAX) depending upon which has
- * . the smaller corresponding subdiagonal entry
- * . (a heuristic).
- * .
- * . Exceptional Case:
- * . If there have been no deflations in KEXNW or
- * . more iterations, then vary the deflation window
- * . size. At first, because, larger windows are,
- * . in general, more powerful than smaller ones,
- * . rapidly increase the window to the maximum possible.
- * . Then, gradually reduce the window size. ====
- *
- NH = KBOT - KTOP + 1
- NWUPBD = MIN( NH, NWMAX )
- IF( NDFL.LT.KEXNW ) THEN
- NW = MIN( NWUPBD, NWR )
- ELSE
- NW = MIN( NWUPBD, 2*NW )
- END IF
- IF( NW.LT.NWMAX ) THEN
- IF( NW.GE.NH-1 ) THEN
- NW = NH
- ELSE
- KWTOP = KBOT - NW + 1
- IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
- $ ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
- END IF
- END IF
- IF( NDFL.LT.KEXNW ) THEN
- NDEC = -1
- ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
- NDEC = NDEC + 1
- IF( NW-NDEC.LT.2 )
- $ NDEC = 0
- NW = NW - NDEC
- END IF
- *
- * ==== Aggressive early deflation:
- * . split workspace under the subdiagonal into
- * . - an nw-by-nw work array V in the lower
- * . left-hand-corner,
- * . - an NW-by-at-least-NW-but-more-is-better
- * . (NW-by-NHO) horizontal work array along
- * . the bottom edge,
- * . - an at-least-NW-but-more-is-better (NHV-by-NW)
- * . vertical work array along the left-hand-edge.
- * . ====
- *
- KV = N - NW + 1
- KT = NW + 1
- NHO = ( N-NW-1 ) - KT + 1
- KWV = NW + 2
- NVE = ( N-NW ) - KWV + 1
- *
- * ==== Aggressive early deflation ====
- *
- CALL SLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
- $ IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
- $ NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
- $ WORK, LWORK )
- *
- * ==== Adjust KBOT accounting for new deflations. ====
- *
- KBOT = KBOT - LD
- *
- * ==== KS points to the shifts. ====
- *
- KS = KBOT - LS + 1
- *
- * ==== Skip an expensive QR sweep if there is a (partly
- * . heuristic) reason to expect that many eigenvalues
- * . will deflate without it. Here, the QR sweep is
- * . skipped if many eigenvalues have just been deflated
- * . or if the remaining active block is small.
- *
- IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
- $ KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
- *
- * ==== NS = nominal number of simultaneous shifts.
- * . This may be lowered (slightly) if SLAQR2
- * . did not provide that many shifts. ====
- *
- NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
- NS = NS - MOD( NS, 2 )
- *
- * ==== If there have been no deflations
- * . in a multiple of KEXSH iterations,
- * . then try exceptional shifts.
- * . Otherwise use shifts provided by
- * . SLAQR2 above or from the eigenvalues
- * . of a trailing principal submatrix. ====
- *
- IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
- KS = KBOT - NS + 1
- DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
- SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
- AA = WILK1*SS + H( I, I )
- BB = SS
- CC = WILK2*SS
- DD = AA
- CALL SLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
- $ WR( I ), WI( I ), CS, SN )
- 30 CONTINUE
- IF( KS.EQ.KTOP ) THEN
- WR( KS+1 ) = H( KS+1, KS+1 )
- WI( KS+1 ) = ZERO
- WR( KS ) = WR( KS+1 )
- WI( KS ) = WI( KS+1 )
- END IF
- ELSE
- *
- * ==== Got NS/2 or fewer shifts? Use SLAHQR
- * . on a trailing principal submatrix to
- * . get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
- * . there is enough space below the subdiagonal
- * . to fit an NS-by-NS scratch array.) ====
- *
- IF( KBOT-KS+1.LE.NS / 2 ) THEN
- KS = KBOT - NS + 1
- KT = N - NS + 1
- CALL SLACPY( 'A', NS, NS, H( KS, KS ), LDH,
- $ H( KT, 1 ), LDH )
- CALL SLAHQR( .false., .false., NS, 1, NS,
- $ H( KT, 1 ), LDH, WR( KS ), WI( KS ),
- $ 1, 1, ZDUM, 1, INF )
- KS = KS + INF
- *
- * ==== In case of a rare QR failure use
- * . eigenvalues of the trailing 2-by-2
- * . principal submatrix. ====
- *
- IF( KS.GE.KBOT ) THEN
- AA = H( KBOT-1, KBOT-1 )
- CC = H( KBOT, KBOT-1 )
- BB = H( KBOT-1, KBOT )
- DD = H( KBOT, KBOT )
- CALL SLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
- $ WI( KBOT-1 ), WR( KBOT ),
- $ WI( KBOT ), CS, SN )
- KS = KBOT - 1
- END IF
- END IF
- *
- IF( KBOT-KS+1.GT.NS ) THEN
- *
- * ==== Sort the shifts (Helps a little)
- * . Bubble sort keeps complex conjugate
- * . pairs together. ====
- *
- SORTED = .false.
- DO 50 K = KBOT, KS + 1, -1
- IF( SORTED )
- $ GO TO 60
- SORTED = .true.
- DO 40 I = KS, K - 1
- IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
- $ ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
- SORTED = .false.
- *
- SWAP = WR( I )
- WR( I ) = WR( I+1 )
- WR( I+1 ) = SWAP
- *
- SWAP = WI( I )
- WI( I ) = WI( I+1 )
- WI( I+1 ) = SWAP
- END IF
- 40 CONTINUE
- 50 CONTINUE
- 60 CONTINUE
- END IF
- *
- * ==== Shuffle shifts into pairs of real shifts
- * . and pairs of complex conjugate shifts
- * . assuming complex conjugate shifts are
- * . already adjacent to one another. (Yes,
- * . they are.) ====
- *
- DO 70 I = KBOT, KS + 2, -2
- IF( WI( I ).NE.-WI( I-1 ) ) THEN
- *
- SWAP = WR( I )
- WR( I ) = WR( I-1 )
- WR( I-1 ) = WR( I-2 )
- WR( I-2 ) = SWAP
- *
- SWAP = WI( I )
- WI( I ) = WI( I-1 )
- WI( I-1 ) = WI( I-2 )
- WI( I-2 ) = SWAP
- END IF
- 70 CONTINUE
- END IF
- *
- * ==== If there are only two shifts and both are
- * . real, then use only one. ====
- *
- IF( KBOT-KS+1.EQ.2 ) THEN
- IF( WI( KBOT ).EQ.ZERO ) THEN
- IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
- $ ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
- WR( KBOT-1 ) = WR( KBOT )
- ELSE
- WR( KBOT ) = WR( KBOT-1 )
- END IF
- END IF
- END IF
- *
- * ==== Use up to NS of the the smallest magnitude
- * . shifts. If there aren't NS shifts available,
- * . then use them all, possibly dropping one to
- * . make the number of shifts even. ====
- *
- NS = MIN( NS, KBOT-KS+1 )
- NS = NS - MOD( NS, 2 )
- KS = KBOT - NS + 1
- *
- * ==== Small-bulge multi-shift QR sweep:
- * . split workspace under the subdiagonal into
- * . - a KDU-by-KDU work array U in the lower
- * . left-hand-corner,
- * . - a KDU-by-at-least-KDU-but-more-is-better
- * . (KDU-by-NHo) horizontal work array WH along
- * . the bottom edge,
- * . - and an at-least-KDU-but-more-is-better-by-KDU
- * . (NVE-by-KDU) vertical work WV arrow along
- * . the left-hand-edge. ====
- *
- KDU = 2*NS
- KU = N - KDU + 1
- KWH = KDU + 1
- NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
- KWV = KDU + 4
- NVE = N - KDU - KWV + 1
- *
- * ==== Small-bulge multi-shift QR sweep ====
- *
- CALL SLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
- $ WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
- $ LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
- $ H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
- END IF
- *
- * ==== Note progress (or the lack of it). ====
- *
- IF( LD.GT.0 ) THEN
- NDFL = 1
- ELSE
- NDFL = NDFL + 1
- END IF
- *
- * ==== End of main loop ====
- 80 CONTINUE
- *
- * ==== Iteration limit exceeded. Set INFO to show where
- * . the problem occurred and exit. ====
- *
- INFO = KBOT
- 90 CONTINUE
- END IF
- *
- * ==== Return the optimal value of LWORK. ====
- *
- WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
- *
- * ==== End of SLAQR4 ====
- *
- END
|