|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static real c_b8 = -1.f;
- static real c_b9 = 1.f;
- static real c_b16 = 0.f;
-
- /* > \brief \b SLAQPS computes a step of QR factorization with column pivoting of a real m-by-n matrix A by us
- ing BLAS level 3. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLAQPS + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqps.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqps.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqps.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLAQPS( M, N, OFFSET, NB, KB, A, LDA, JPVT, TAU, VN1, */
- /* VN2, AUXV, F, LDF ) */
-
- /* INTEGER KB, LDA, LDF, M, N, NB, OFFSET */
- /* INTEGER JPVT( * ) */
- /* REAL A( LDA, * ), AUXV( * ), F( LDF, * ), TAU( * ), */
- /* $ VN1( * ), VN2( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLAQPS computes a step of QR factorization with column pivoting */
- /* > of a real M-by-N matrix A by using Blas-3. It tries to factorize */
- /* > NB columns from A starting from the row OFFSET+1, and updates all */
- /* > of the matrix with Blas-3 xGEMM. */
- /* > */
- /* > In some cases, due to catastrophic cancellations, it cannot */
- /* > factorize NB columns. Hence, the actual number of factorized */
- /* > columns is returned in KB. */
- /* > */
- /* > Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix A. N >= 0 */
- /* > \endverbatim */
- /* > */
- /* > \param[in] OFFSET */
- /* > \verbatim */
- /* > OFFSET is INTEGER */
- /* > The number of rows of A that have been factorized in */
- /* > previous steps. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NB */
- /* > \verbatim */
- /* > NB is INTEGER */
- /* > The number of columns to factorize. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] KB */
- /* > \verbatim */
- /* > KB is INTEGER */
- /* > The number of columns actually factorized. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, block A(OFFSET+1:M,1:KB) is the triangular */
- /* > factor obtained and block A(1:OFFSET,1:N) has been */
- /* > accordingly pivoted, but no factorized. */
- /* > The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has */
- /* > been updated. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] JPVT */
- /* > \verbatim */
- /* > JPVT is INTEGER array, dimension (N) */
- /* > JPVT(I) = K <==> Column K of the full matrix A has been */
- /* > permuted into position I in AP. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAU */
- /* > \verbatim */
- /* > TAU is REAL array, dimension (KB) */
- /* > The scalar factors of the elementary reflectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VN1 */
- /* > \verbatim */
- /* > VN1 is REAL array, dimension (N) */
- /* > The vector with the partial column norms. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VN2 */
- /* > \verbatim */
- /* > VN2 is REAL array, dimension (N) */
- /* > The vector with the exact column norms. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AUXV */
- /* > \verbatim */
- /* > AUXV is REAL array, dimension (NB) */
- /* > Auxiliary vector. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] F */
- /* > \verbatim */
- /* > F is REAL array, dimension (LDF,NB) */
- /* > Matrix F**T = L*Y**T*A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDF */
- /* > \verbatim */
- /* > LDF is INTEGER */
- /* > The leading dimension of the array F. LDF >= f2cmax(1,N). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
- /* > X. Sun, Computer Science Dept., Duke University, USA */
- /* > */
- /* > \n */
- /* > Partial column norm updating strategy modified on April 2011 */
- /* > Z. Drmac and Z. Bujanovic, Dept. of Mathematics, */
- /* > University of Zagreb, Croatia. */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > LAPACK Working Note 176 */
-
- /* > \htmlonly */
- /* > <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">[PDF]</a> */
- /* > \endhtmlonly */
-
- /* ===================================================================== */
- /* Subroutine */ void slaqps_(integer *m, integer *n, integer *offset, integer
- *nb, integer *kb, real *a, integer *lda, integer *jpvt, real *tau,
- real *vn1, real *vn2, real *auxv, real *f, integer *ldf)
- {
- /* System generated locals */
- integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2;
- real r__1, r__2;
-
- /* Local variables */
- real temp, temp2;
- extern real snrm2_(integer *, real *, integer *);
- integer j, k;
- real tol3z;
- extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, real *, integer *, real *,
- real *, integer *);
- integer itemp;
- extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *,
- real *, integer *, real *, integer *, real *, real *, integer *), sswap_(integer *, real *, integer *, real *, integer *);
- integer rk;
- extern real slamch_(char *);
- extern /* Subroutine */ void slarfg_(integer *, real *, real *, integer *,
- real *);
- integer lsticc;
- extern integer isamax_(integer *, real *, integer *);
- integer lastrk;
- real akk;
- integer pvt;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --jpvt;
- --tau;
- --vn1;
- --vn2;
- --auxv;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1 * 1;
- f -= f_offset;
-
- /* Function Body */
- /* Computing MIN */
- i__1 = *m, i__2 = *n + *offset;
- lastrk = f2cmin(i__1,i__2);
- lsticc = 0;
- k = 0;
- tol3z = sqrt(slamch_("Epsilon"));
-
- /* Beginning of while loop. */
-
- L10:
- if (k < *nb && lsticc == 0) {
- ++k;
- rk = *offset + k;
-
- /* Determine ith pivot column and swap if necessary */
-
- i__1 = *n - k + 1;
- pvt = k - 1 + isamax_(&i__1, &vn1[k], &c__1);
- if (pvt != k) {
- sswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
- i__1 = k - 1;
- sswap_(&i__1, &f[pvt + f_dim1], ldf, &f[k + f_dim1], ldf);
- itemp = jpvt[pvt];
- jpvt[pvt] = jpvt[k];
- jpvt[k] = itemp;
- vn1[pvt] = vn1[k];
- vn2[pvt] = vn2[k];
- }
-
- /* Apply previous Householder reflectors to column K: */
- /* A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)**T. */
-
- if (k > 1) {
- i__1 = *m - rk + 1;
- i__2 = k - 1;
- sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[rk + a_dim1], lda,
- &f[k + f_dim1], ldf, &c_b9, &a[rk + k * a_dim1], &c__1);
- }
-
- /* Generate elementary reflector H(k). */
-
- if (rk < *m) {
- i__1 = *m - rk + 1;
- slarfg_(&i__1, &a[rk + k * a_dim1], &a[rk + 1 + k * a_dim1], &
- c__1, &tau[k]);
- } else {
- slarfg_(&c__1, &a[rk + k * a_dim1], &a[rk + k * a_dim1], &c__1, &
- tau[k]);
- }
-
- akk = a[rk + k * a_dim1];
- a[rk + k * a_dim1] = 1.f;
-
- /* Compute Kth column of F: */
-
- /* Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)**T*A(RK:M,K). */
-
- if (k < *n) {
- i__1 = *m - rk + 1;
- i__2 = *n - k;
- sgemv_("Transpose", &i__1, &i__2, &tau[k], &a[rk + (k + 1) *
- a_dim1], lda, &a[rk + k * a_dim1], &c__1, &c_b16, &f[k +
- 1 + k * f_dim1], &c__1);
- }
-
- /* Padding F(1:K,K) with zeros. */
-
- i__1 = k;
- for (j = 1; j <= i__1; ++j) {
- f[j + k * f_dim1] = 0.f;
- /* L20: */
- }
-
- /* Incremental updating of F: */
- /* F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)**T */
- /* *A(RK:M,K). */
-
- if (k > 1) {
- i__1 = *m - rk + 1;
- i__2 = k - 1;
- r__1 = -tau[k];
- sgemv_("Transpose", &i__1, &i__2, &r__1, &a[rk + a_dim1], lda, &a[
- rk + k * a_dim1], &c__1, &c_b16, &auxv[1], &c__1);
-
- i__1 = k - 1;
- sgemv_("No transpose", n, &i__1, &c_b9, &f[f_dim1 + 1], ldf, &
- auxv[1], &c__1, &c_b9, &f[k * f_dim1 + 1], &c__1);
- }
-
- /* Update the current row of A: */
- /* A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)**T. */
-
- if (k < *n) {
- i__1 = *n - k;
- sgemv_("No transpose", &i__1, &k, &c_b8, &f[k + 1 + f_dim1], ldf,
- &a[rk + a_dim1], lda, &c_b9, &a[rk + (k + 1) * a_dim1],
- lda);
- }
-
- /* Update partial column norms. */
-
- if (rk < lastrk) {
- i__1 = *n;
- for (j = k + 1; j <= i__1; ++j) {
- if (vn1[j] != 0.f) {
-
- /* NOTE: The following 4 lines follow from the analysis in */
- /* Lapack Working Note 176. */
-
- temp = (r__1 = a[rk + j * a_dim1], abs(r__1)) / vn1[j];
- /* Computing MAX */
- r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
- temp = f2cmax(r__1,r__2);
- /* Computing 2nd power */
- r__1 = vn1[j] / vn2[j];
- temp2 = temp * (r__1 * r__1);
- if (temp2 <= tol3z) {
- vn2[j] = (real) lsticc;
- lsticc = j;
- } else {
- vn1[j] *= sqrt(temp);
- }
- }
- /* L30: */
- }
- }
-
- a[rk + k * a_dim1] = akk;
-
- /* End of while loop. */
-
- goto L10;
- }
- *kb = k;
- rk = *offset + *kb;
-
- /* Apply the block reflector to the rest of the matrix: */
- /* A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - */
- /* A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)**T. */
-
- /* Computing MIN */
- i__1 = *n, i__2 = *m - *offset;
- if (*kb < f2cmin(i__1,i__2)) {
- i__1 = *m - rk;
- i__2 = *n - *kb;
- sgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &c_b8, &a[rk +
- 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b9, &a[rk + 1
- + (*kb + 1) * a_dim1], lda);
- }
-
- /* Recomputation of difficult columns. */
-
- L40:
- if (lsticc > 0) {
- itemp = i_nint(&vn2[lsticc]);
- i__1 = *m - rk;
- vn1[lsticc] = snrm2_(&i__1, &a[rk + 1 + lsticc * a_dim1], &c__1);
-
- /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
- /* SNRM2 does not fail on vectors with norm below the value of */
- /* SQRT(DLAMCH('S')) */
-
- vn2[lsticc] = vn1[lsticc];
- lsticc = itemp;
- goto L40;
- }
-
- return;
-
- /* End of SLAQPS */
-
- } /* slaqps_ */
|