|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* > \brief \b SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B su
- ch that the rows of the transformed A and B are parallel. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SLAGS2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slags2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slags2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slags2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, */
- /* SNV, CSQ, SNQ ) */
-
- /* LOGICAL UPPER */
- /* REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, */
- /* $ SNU, SNV */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such */
- /* > that if ( UPPER ) then */
- /* > */
- /* > U**T *A*Q = U**T *( A1 A2 )*Q = ( x 0 ) */
- /* > ( 0 A3 ) ( x x ) */
- /* > and */
- /* > V**T*B*Q = V**T *( B1 B2 )*Q = ( x 0 ) */
- /* > ( 0 B3 ) ( x x ) */
- /* > */
- /* > or if ( .NOT.UPPER ) then */
- /* > */
- /* > U**T *A*Q = U**T *( A1 0 )*Q = ( x x ) */
- /* > ( A2 A3 ) ( 0 x ) */
- /* > and */
- /* > V**T*B*Q = V**T*( B1 0 )*Q = ( x x ) */
- /* > ( B2 B3 ) ( 0 x ) */
- /* > */
- /* > The rows of the transformed A and B are parallel, where */
- /* > */
- /* > U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) */
- /* > ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) */
- /* > */
- /* > Z**T denotes the transpose of Z. */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPPER */
- /* > \verbatim */
- /* > UPPER is LOGICAL */
- /* > = .TRUE.: the input matrices A and B are upper triangular. */
- /* > = .FALSE.: the input matrices A and B are lower triangular. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A1 */
- /* > \verbatim */
- /* > A1 is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A2 */
- /* > \verbatim */
- /* > A2 is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A3 */
- /* > \verbatim */
- /* > A3 is REAL */
- /* > On entry, A1, A2 and A3 are elements of the input 2-by-2 */
- /* > upper (lower) triangular matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B1 */
- /* > \verbatim */
- /* > B1 is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B2 */
- /* > \verbatim */
- /* > B2 is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B3 */
- /* > \verbatim */
- /* > B3 is REAL */
- /* > On entry, B1, B2 and B3 are elements of the input 2-by-2 */
- /* > upper (lower) triangular matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] CSU */
- /* > \verbatim */
- /* > CSU is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SNU */
- /* > \verbatim */
- /* > SNU is REAL */
- /* > The desired orthogonal matrix U. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] CSV */
- /* > \verbatim */
- /* > CSV is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SNV */
- /* > \verbatim */
- /* > SNV is REAL */
- /* > The desired orthogonal matrix V. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] CSQ */
- /* > \verbatim */
- /* > CSQ is REAL */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SNQ */
- /* > \verbatim */
- /* > SNQ is REAL */
- /* > The desired orthogonal matrix Q. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void slags2_(logical *upper, real *a1, real *a2, real *a3,
- real *b1, real *b2, real *b3, real *csu, real *snu, real *csv, real *
- snv, real *csq, real *snq)
- {
- /* System generated locals */
- real r__1;
-
- /* Local variables */
- real aua11, aua12, aua21, aua22, avb11, avb12, avb21, avb22, ua11r, ua22r,
- vb11r, vb22r, a, b, c__, d__, r__, s1, s2;
- extern /* Subroutine */ void slasv2_(real *, real *, real *, real *, real *
- , real *, real *, real *, real *), slartg_(real *, real *, real *,
- real *, real *);
- real ua11, ua12, ua21, ua22, vb11, vb12, vb21, vb22, csl, csr, snl, snr;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- if (*upper) {
-
- /* Input matrices A and B are upper triangular matrices */
-
- /* Form matrix C = A*adj(B) = ( a b ) */
- /* ( 0 d ) */
-
- a = *a1 * *b3;
- d__ = *a3 * *b1;
- b = *a2 * *b1 - *a1 * *b2;
-
- /* The SVD of real 2-by-2 triangular C */
-
- /* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 ) */
- /* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T ) */
-
- slasv2_(&a, &b, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
-
- if (abs(csl) >= abs(snl) || abs(csr) >= abs(snr)) {
-
- /* Compute the (1,1) and (1,2) elements of U**T *A and V**T *B, */
- /* and (1,2) element of |U|**T *|A| and |V|**T *|B|. */
-
- ua11r = csl * *a1;
- ua12 = csl * *a2 + snl * *a3;
-
- vb11r = csr * *b1;
- vb12 = csr * *b2 + snr * *b3;
-
- aua12 = abs(csl) * abs(*a2) + abs(snl) * abs(*a3);
- avb12 = abs(csr) * abs(*b2) + abs(snr) * abs(*b3);
-
- /* zero (1,2) elements of U**T *A and V**T *B */
-
- if (abs(ua11r) + abs(ua12) != 0.f) {
- if (aua12 / (abs(ua11r) + abs(ua12)) <= avb12 / (abs(vb11r) +
- abs(vb12))) {
- r__1 = -ua11r;
- slartg_(&r__1, &ua12, csq, snq, &r__);
- } else {
- r__1 = -vb11r;
- slartg_(&r__1, &vb12, csq, snq, &r__);
- }
- } else {
- r__1 = -vb11r;
- slartg_(&r__1, &vb12, csq, snq, &r__);
- }
-
- *csu = csl;
- *snu = -snl;
- *csv = csr;
- *snv = -snr;
-
- } else {
-
- /* Compute the (2,1) and (2,2) elements of U**T *A and V**T *B, */
- /* and (2,2) element of |U|**T *|A| and |V|**T *|B|. */
-
- ua21 = -snl * *a1;
- ua22 = -snl * *a2 + csl * *a3;
-
- vb21 = -snr * *b1;
- vb22 = -snr * *b2 + csr * *b3;
-
- aua22 = abs(snl) * abs(*a2) + abs(csl) * abs(*a3);
- avb22 = abs(snr) * abs(*b2) + abs(csr) * abs(*b3);
-
- /* zero (2,2) elements of U**T*A and V**T*B, and then swap. */
-
- if (abs(ua21) + abs(ua22) != 0.f) {
- if (aua22 / (abs(ua21) + abs(ua22)) <= avb22 / (abs(vb21) +
- abs(vb22))) {
- r__1 = -ua21;
- slartg_(&r__1, &ua22, csq, snq, &r__);
- } else {
- r__1 = -vb21;
- slartg_(&r__1, &vb22, csq, snq, &r__);
- }
- } else {
- r__1 = -vb21;
- slartg_(&r__1, &vb22, csq, snq, &r__);
- }
-
- *csu = snl;
- *snu = csl;
- *csv = snr;
- *snv = csr;
-
- }
-
- } else {
-
- /* Input matrices A and B are lower triangular matrices */
-
- /* Form matrix C = A*adj(B) = ( a 0 ) */
- /* ( c d ) */
-
- a = *a1 * *b3;
- d__ = *a3 * *b1;
- c__ = *a2 * *b3 - *a3 * *b2;
-
- /* The SVD of real 2-by-2 triangular C */
-
- /* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 ) */
- /* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T ) */
-
- slasv2_(&a, &c__, &d__, &s1, &s2, &snr, &csr, &snl, &csl);
-
- if (abs(csr) >= abs(snr) || abs(csl) >= abs(snl)) {
-
- /* Compute the (2,1) and (2,2) elements of U**T *A and V**T *B, */
- /* and (2,1) element of |U|**T *|A| and |V|**T *|B|. */
-
- ua21 = -snr * *a1 + csr * *a2;
- ua22r = csr * *a3;
-
- vb21 = -snl * *b1 + csl * *b2;
- vb22r = csl * *b3;
-
- aua21 = abs(snr) * abs(*a1) + abs(csr) * abs(*a2);
- avb21 = abs(snl) * abs(*b1) + abs(csl) * abs(*b2);
-
- /* zero (2,1) elements of U**T *A and V**T *B. */
-
- if (abs(ua21) + abs(ua22r) != 0.f) {
- if (aua21 / (abs(ua21) + abs(ua22r)) <= avb21 / (abs(vb21) +
- abs(vb22r))) {
- slartg_(&ua22r, &ua21, csq, snq, &r__);
- } else {
- slartg_(&vb22r, &vb21, csq, snq, &r__);
- }
- } else {
- slartg_(&vb22r, &vb21, csq, snq, &r__);
- }
-
- *csu = csr;
- *snu = -snr;
- *csv = csl;
- *snv = -snl;
-
- } else {
-
- /* Compute the (1,1) and (1,2) elements of U**T *A and V**T *B, */
- /* and (1,1) element of |U|**T *|A| and |V|**T *|B|. */
-
- ua11 = csr * *a1 + snr * *a2;
- ua12 = snr * *a3;
-
- vb11 = csl * *b1 + snl * *b2;
- vb12 = snl * *b3;
-
- aua11 = abs(csr) * abs(*a1) + abs(snr) * abs(*a2);
- avb11 = abs(csl) * abs(*b1) + abs(snl) * abs(*b2);
-
- /* zero (1,1) elements of U**T*A and V**T*B, and then swap. */
-
- if (abs(ua11) + abs(ua12) != 0.f) {
- if (aua11 / (abs(ua11) + abs(ua12)) <= avb11 / (abs(vb11) +
- abs(vb12))) {
- slartg_(&ua12, &ua11, csq, snq, &r__);
- } else {
- slartg_(&vb12, &vb11, csq, snq, &r__);
- }
- } else {
- slartg_(&vb12, &vb11, csq, snq, &r__);
- }
-
- *csu = snr;
- *snu = csr;
- *csv = snl;
- *snv = csl;
-
- }
-
- }
-
- return;
-
- /* End of SLAGS2 */
-
- } /* slags2_ */
|