|
- *> \brief \b SLAED2 used by SSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLAED2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMBDA, W,
- * Q2, INDX, INDXC, INDXP, COLTYP, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, K, LDQ, N, N1
- * REAL RHO
- * ..
- * .. Array Arguments ..
- * INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
- * $ INDXQ( * )
- * REAL D( * ), DLAMBDA( * ), Q( LDQ, * ), Q2( * ),
- * $ W( * ), Z( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAED2 merges the two sets of eigenvalues together into a single
- *> sorted set. Then it tries to deflate the size of the problem.
- *> There are two ways in which deflation can occur: when two or more
- *> eigenvalues are close together or if there is a tiny entry in the
- *> Z vector. For each such occurrence the order of the related secular
- *> equation problem is reduced by one.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[out] K
- *> \verbatim
- *> K is INTEGER
- *> The number of non-deflated eigenvalues, and the order of the
- *> related secular equation. 0 <= K <=N.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the symmetric tridiagonal matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] N1
- *> \verbatim
- *> N1 is INTEGER
- *> The location of the last eigenvalue in the leading sub-matrix.
- *> min(1,N) <= N1 <= N/2.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is REAL array, dimension (N)
- *> On entry, D contains the eigenvalues of the two submatrices to
- *> be combined.
- *> On exit, D contains the trailing (N-K) updated eigenvalues
- *> (those which were deflated) sorted into increasing order.
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is REAL array, dimension (LDQ, N)
- *> On entry, Q contains the eigenvectors of two submatrices in
- *> the two square blocks with corners at (1,1), (N1,N1)
- *> and (N1+1, N1+1), (N,N).
- *> On exit, Q contains the trailing (N-K) updated eigenvectors
- *> (those which were deflated) in its last N-K columns.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] INDXQ
- *> \verbatim
- *> INDXQ is INTEGER array, dimension (N)
- *> The permutation which separately sorts the two sub-problems
- *> in D into ascending order. Note that elements in the second
- *> half of this permutation must first have N1 added to their
- *> values. Destroyed on exit.
- *> \endverbatim
- *>
- *> \param[in,out] RHO
- *> \verbatim
- *> RHO is REAL
- *> On entry, the off-diagonal element associated with the rank-1
- *> cut which originally split the two submatrices which are now
- *> being recombined.
- *> On exit, RHO has been modified to the value required by
- *> SLAED3.
- *> \endverbatim
- *>
- *> \param[in] Z
- *> \verbatim
- *> Z is REAL array, dimension (N)
- *> On entry, Z contains the updating vector (the last
- *> row of the first sub-eigenvector matrix and the first row of
- *> the second sub-eigenvector matrix).
- *> On exit, the contents of Z have been destroyed by the updating
- *> process.
- *> \endverbatim
- *>
- *> \param[out] DLAMBDA
- *> \verbatim
- *> DLAMBDA is REAL array, dimension (N)
- *> A copy of the first K eigenvalues which will be used by
- *> SLAED3 to form the secular equation.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is REAL array, dimension (N)
- *> The first k values of the final deflation-altered z-vector
- *> which will be passed to SLAED3.
- *> \endverbatim
- *>
- *> \param[out] Q2
- *> \verbatim
- *> Q2 is REAL array, dimension (N1**2+(N-N1)**2)
- *> A copy of the first K eigenvectors which will be used by
- *> SLAED3 in a matrix multiply (SGEMM) to solve for the new
- *> eigenvectors.
- *> \endverbatim
- *>
- *> \param[out] INDX
- *> \verbatim
- *> INDX is INTEGER array, dimension (N)
- *> The permutation used to sort the contents of DLAMBDA into
- *> ascending order.
- *> \endverbatim
- *>
- *> \param[out] INDXC
- *> \verbatim
- *> INDXC is INTEGER array, dimension (N)
- *> The permutation used to arrange the columns of the deflated
- *> Q matrix into three groups: the first group contains non-zero
- *> elements only at and above N1, the second contains
- *> non-zero elements only below N1, and the third is dense.
- *> \endverbatim
- *>
- *> \param[out] INDXP
- *> \verbatim
- *> INDXP is INTEGER array, dimension (N)
- *> The permutation used to place deflated values of D at the end
- *> of the array. INDXP(1:K) points to the nondeflated D-values
- *> and INDXP(K+1:N) points to the deflated eigenvalues.
- *> \endverbatim
- *>
- *> \param[out] COLTYP
- *> \verbatim
- *> COLTYP is INTEGER array, dimension (N)
- *> During execution, a label which will indicate which of the
- *> following types a column in the Q2 matrix is:
- *> 1 : non-zero in the upper half only;
- *> 2 : dense;
- *> 3 : non-zero in the lower half only;
- *> 4 : deflated.
- *> On exit, COLTYP(i) is the number of columns of type i,
- *> for i=1 to 4 only.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup auxOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> Jeff Rutter, Computer Science Division, University of California
- *> at Berkeley, USA \n
- *> Modified by Francoise Tisseur, University of Tennessee
- *>
- * =====================================================================
- SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMBDA, W,
- $ Q2, INDX, INDXC, INDXP, COLTYP, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, K, LDQ, N, N1
- REAL RHO
- * ..
- * .. Array Arguments ..
- INTEGER COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
- $ INDXQ( * )
- REAL D( * ), DLAMBDA( * ), Q( LDQ, * ), Q2( * ),
- $ W( * ), Z( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL MONE, ZERO, ONE, TWO, EIGHT
- PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
- $ TWO = 2.0E0, EIGHT = 8.0E0 )
- * ..
- * .. Local Arrays ..
- INTEGER CTOT( 4 ), PSM( 4 )
- * ..
- * .. Local Scalars ..
- INTEGER CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
- $ N2, NJ, PJ
- REAL C, EPS, S, T, TAU, TOL
- * ..
- * .. External Functions ..
- INTEGER ISAMAX
- REAL SLAMCH, SLAPY2
- EXTERNAL ISAMAX, SLAMCH, SLAPY2
- * ..
- * .. External Subroutines ..
- EXTERNAL SCOPY, SLACPY, SLAMRG, SROT, SSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- *
- IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
- INFO = -6
- ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
- INFO = -3
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SLAED2', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- N2 = N - N1
- N1P1 = N1 + 1
- *
- IF( RHO.LT.ZERO ) THEN
- CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
- END IF
- *
- * Normalize z so that norm(z) = 1. Since z is the concatenation of
- * two normalized vectors, norm2(z) = sqrt(2).
- *
- T = ONE / SQRT( TWO )
- CALL SSCAL( N, T, Z, 1 )
- *
- * RHO = ABS( norm(z)**2 * RHO )
- *
- RHO = ABS( TWO*RHO )
- *
- * Sort the eigenvalues into increasing order
- *
- DO 10 I = N1P1, N
- INDXQ( I ) = INDXQ( I ) + N1
- 10 CONTINUE
- *
- * re-integrate the deflated parts from the last pass
- *
- DO 20 I = 1, N
- DLAMBDA( I ) = D( INDXQ( I ) )
- 20 CONTINUE
- CALL SLAMRG( N1, N2, DLAMBDA, 1, 1, INDXC )
- DO 30 I = 1, N
- INDX( I ) = INDXQ( INDXC( I ) )
- 30 CONTINUE
- *
- * Calculate the allowable deflation tolerance
- *
- IMAX = ISAMAX( N, Z, 1 )
- JMAX = ISAMAX( N, D, 1 )
- EPS = SLAMCH( 'Epsilon' )
- TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
- *
- * If the rank-1 modifier is small enough, no more needs to be done
- * except to reorganize Q so that its columns correspond with the
- * elements in D.
- *
- IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
- K = 0
- IQ2 = 1
- DO 40 J = 1, N
- I = INDX( J )
- CALL SCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
- DLAMBDA( J ) = D( I )
- IQ2 = IQ2 + N
- 40 CONTINUE
- CALL SLACPY( 'A', N, N, Q2, N, Q, LDQ )
- CALL SCOPY( N, DLAMBDA, 1, D, 1 )
- GO TO 190
- END IF
- *
- * If there are multiple eigenvalues then the problem deflates. Here
- * the number of equal eigenvalues are found. As each equal
- * eigenvalue is found, an elementary reflector is computed to rotate
- * the corresponding eigensubspace so that the corresponding
- * components of Z are zero in this new basis.
- *
- DO 50 I = 1, N1
- COLTYP( I ) = 1
- 50 CONTINUE
- DO 60 I = N1P1, N
- COLTYP( I ) = 3
- 60 CONTINUE
- *
- *
- K = 0
- K2 = N + 1
- DO 70 J = 1, N
- NJ = INDX( J )
- IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
- *
- * Deflate due to small z component.
- *
- K2 = K2 - 1
- COLTYP( NJ ) = 4
- INDXP( K2 ) = NJ
- IF( J.EQ.N )
- $ GO TO 100
- ELSE
- PJ = NJ
- GO TO 80
- END IF
- 70 CONTINUE
- 80 CONTINUE
- J = J + 1
- NJ = INDX( J )
- IF( J.GT.N )
- $ GO TO 100
- IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
- *
- * Deflate due to small z component.
- *
- K2 = K2 - 1
- COLTYP( NJ ) = 4
- INDXP( K2 ) = NJ
- ELSE
- *
- * Check if eigenvalues are close enough to allow deflation.
- *
- S = Z( PJ )
- C = Z( NJ )
- *
- * Find sqrt(a**2+b**2) without overflow or
- * destructive underflow.
- *
- TAU = SLAPY2( C, S )
- T = D( NJ ) - D( PJ )
- C = C / TAU
- S = -S / TAU
- IF( ABS( T*C*S ).LE.TOL ) THEN
- *
- * Deflation is possible.
- *
- Z( NJ ) = TAU
- Z( PJ ) = ZERO
- IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
- $ COLTYP( NJ ) = 2
- COLTYP( PJ ) = 4
- CALL SROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
- T = D( PJ )*C**2 + D( NJ )*S**2
- D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
- D( PJ ) = T
- K2 = K2 - 1
- I = 1
- 90 CONTINUE
- IF( K2+I.LE.N ) THEN
- IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
- INDXP( K2+I-1 ) = INDXP( K2+I )
- INDXP( K2+I ) = PJ
- I = I + 1
- GO TO 90
- ELSE
- INDXP( K2+I-1 ) = PJ
- END IF
- ELSE
- INDXP( K2+I-1 ) = PJ
- END IF
- PJ = NJ
- ELSE
- K = K + 1
- DLAMBDA( K ) = D( PJ )
- W( K ) = Z( PJ )
- INDXP( K ) = PJ
- PJ = NJ
- END IF
- END IF
- GO TO 80
- 100 CONTINUE
- *
- * Record the last eigenvalue.
- *
- K = K + 1
- DLAMBDA( K ) = D( PJ )
- W( K ) = Z( PJ )
- INDXP( K ) = PJ
- *
- * Count up the total number of the various types of columns, then
- * form a permutation which positions the four column types into
- * four uniform groups (although one or more of these groups may be
- * empty).
- *
- DO 110 J = 1, 4
- CTOT( J ) = 0
- 110 CONTINUE
- DO 120 J = 1, N
- CT = COLTYP( J )
- CTOT( CT ) = CTOT( CT ) + 1
- 120 CONTINUE
- *
- * PSM(*) = Position in SubMatrix (of types 1 through 4)
- *
- PSM( 1 ) = 1
- PSM( 2 ) = 1 + CTOT( 1 )
- PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
- PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
- K = N - CTOT( 4 )
- *
- * Fill out the INDXC array so that the permutation which it induces
- * will place all type-1 columns first, all type-2 columns next,
- * then all type-3's, and finally all type-4's.
- *
- DO 130 J = 1, N
- JS = INDXP( J )
- CT = COLTYP( JS )
- INDX( PSM( CT ) ) = JS
- INDXC( PSM( CT ) ) = J
- PSM( CT ) = PSM( CT ) + 1
- 130 CONTINUE
- *
- * Sort the eigenvalues and corresponding eigenvectors into DLAMBDA
- * and Q2 respectively. The eigenvalues/vectors which were not
- * deflated go into the first K slots of DLAMBDA and Q2 respectively,
- * while those which were deflated go into the last N - K slots.
- *
- I = 1
- IQ1 = 1
- IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
- DO 140 J = 1, CTOT( 1 )
- JS = INDX( I )
- CALL SCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
- Z( I ) = D( JS )
- I = I + 1
- IQ1 = IQ1 + N1
- 140 CONTINUE
- *
- DO 150 J = 1, CTOT( 2 )
- JS = INDX( I )
- CALL SCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
- CALL SCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
- Z( I ) = D( JS )
- I = I + 1
- IQ1 = IQ1 + N1
- IQ2 = IQ2 + N2
- 150 CONTINUE
- *
- DO 160 J = 1, CTOT( 3 )
- JS = INDX( I )
- CALL SCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
- Z( I ) = D( JS )
- I = I + 1
- IQ2 = IQ2 + N2
- 160 CONTINUE
- *
- IQ1 = IQ2
- DO 170 J = 1, CTOT( 4 )
- JS = INDX( I )
- CALL SCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
- IQ2 = IQ2 + N
- Z( I ) = D( JS )
- I = I + 1
- 170 CONTINUE
- *
- * The deflated eigenvalues and their corresponding vectors go back
- * into the last N - K slots of D and Q respectively.
- *
- IF( K.LT.N ) THEN
- CALL SLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N,
- $ Q( 1, K+1 ), LDQ )
- CALL SCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
- END IF
- *
- * Copy CTOT into COLTYP for referencing in SLAED3.
- *
- DO 180 J = 1, 4
- COLTYP( J ) = CTOT( J )
- 180 CONTINUE
- *
- 190 CONTINUE
- RETURN
- *
- * End of SLAED2
- *
- END
|