|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static logical c_false = FALSE_;
- static logical c_true = TRUE_;
-
- /* > \brief \b SHSEIN */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SHSEIN + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/shsein.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/shsein.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/shsein.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, */
- /* VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL, */
- /* IFAILR, INFO ) */
-
- /* CHARACTER EIGSRC, INITV, SIDE */
- /* INTEGER INFO, LDH, LDVL, LDVR, M, MM, N */
- /* LOGICAL SELECT( * ) */
- /* INTEGER IFAILL( * ), IFAILR( * ) */
- /* REAL H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ), */
- /* $ WI( * ), WORK( * ), WR( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SHSEIN uses inverse iteration to find specified right and/or left */
- /* > eigenvectors of a real upper Hessenberg matrix H. */
- /* > */
- /* > The right eigenvector x and the left eigenvector y of the matrix H */
- /* > corresponding to an eigenvalue w are defined by: */
- /* > */
- /* > H * x = w * x, y**h * H = w * y**h */
- /* > */
- /* > where y**h denotes the conjugate transpose of the vector y. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] SIDE */
- /* > \verbatim */
- /* > SIDE is CHARACTER*1 */
- /* > = 'R': compute right eigenvectors only; */
- /* > = 'L': compute left eigenvectors only; */
- /* > = 'B': compute both right and left eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] EIGSRC */
- /* > \verbatim */
- /* > EIGSRC is CHARACTER*1 */
- /* > Specifies the source of eigenvalues supplied in (WR,WI): */
- /* > = 'Q': the eigenvalues were found using SHSEQR; thus, if */
- /* > H has zero subdiagonal elements, and so is */
- /* > block-triangular, then the j-th eigenvalue can be */
- /* > assumed to be an eigenvalue of the block containing */
- /* > the j-th row/column. This property allows SHSEIN to */
- /* > perform inverse iteration on just one diagonal block. */
- /* > = 'N': no assumptions are made on the correspondence */
- /* > between eigenvalues and diagonal blocks. In this */
- /* > case, SHSEIN must always perform inverse iteration */
- /* > using the whole matrix H. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] INITV */
- /* > \verbatim */
- /* > INITV is CHARACTER*1 */
- /* > = 'N': no initial vectors are supplied; */
- /* > = 'U': user-supplied initial vectors are stored in the arrays */
- /* > VL and/or VR. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > Specifies the eigenvectors to be computed. To select the */
- /* > real eigenvector corresponding to a real eigenvalue WR(j), */
- /* > SELECT(j) must be set to .TRUE.. To select the complex */
- /* > eigenvector corresponding to a complex eigenvalue */
- /* > (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), */
- /* > either SELECT(j) or SELECT(j+1) or both must be set to */
- /* > .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is */
- /* > .FALSE.. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix H. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] H */
- /* > \verbatim */
- /* > H is REAL array, dimension (LDH,N) */
- /* > The upper Hessenberg matrix H. */
- /* > If a NaN is detected in H, the routine will return with INFO=-6. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] WR */
- /* > \verbatim */
- /* > WR is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WI */
- /* > \verbatim */
- /* > WI is REAL array, dimension (N) */
- /* > */
- /* > On entry, the real and imaginary parts of the eigenvalues of */
- /* > H; a complex conjugate pair of eigenvalues must be stored in */
- /* > consecutive elements of WR and WI. */
- /* > On exit, WR may have been altered since close eigenvalues */
- /* > are perturbed slightly in searching for independent */
- /* > eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VL */
- /* > \verbatim */
- /* > VL is REAL array, dimension (LDVL,MM) */
- /* > On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
- /* > contain starting vectors for the inverse iteration for the */
- /* > left eigenvectors; the starting vector for each eigenvector */
- /* > must be in the same column(s) in which the eigenvector will */
- /* > be stored. */
- /* > On exit, if SIDE = 'L' or 'B', the left eigenvectors */
- /* > specified by SELECT will be stored consecutively in the */
- /* > columns of VL, in the same order as their eigenvalues. A */
- /* > complex eigenvector corresponding to a complex eigenvalue is */
- /* > stored in two consecutive columns, the first holding the real */
- /* > part and the second the imaginary part. */
- /* > If SIDE = 'R', VL is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the array VL. */
- /* > LDVL >= f2cmax(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VR */
- /* > \verbatim */
- /* > VR is REAL array, dimension (LDVR,MM) */
- /* > On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
- /* > contain starting vectors for the inverse iteration for the */
- /* > right eigenvectors; the starting vector for each eigenvector */
- /* > must be in the same column(s) in which the eigenvector will */
- /* > be stored. */
- /* > On exit, if SIDE = 'R' or 'B', the right eigenvectors */
- /* > specified by SELECT will be stored consecutively in the */
- /* > columns of VR, in the same order as their eigenvalues. A */
- /* > complex eigenvector corresponding to a complex eigenvalue is */
- /* > stored in two consecutive columns, the first holding the real */
- /* > part and the second the imaginary part. */
- /* > If SIDE = 'L', VR is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the array VR. */
- /* > LDVR >= f2cmax(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MM */
- /* > \verbatim */
- /* > MM is INTEGER */
- /* > The number of columns in the arrays VL and/or VR. MM >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of columns in the arrays VL and/or VR required to */
- /* > store the eigenvectors; each selected real eigenvector */
- /* > occupies one column and each selected complex eigenvector */
- /* > occupies two columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension ((N+2)*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IFAILL */
- /* > \verbatim */
- /* > IFAILL is INTEGER array, dimension (MM) */
- /* > If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
- /* > eigenvector in the i-th column of VL (corresponding to the */
- /* > eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
- /* > eigenvector converged satisfactorily. If the i-th and (i+1)th */
- /* > columns of VL hold a complex eigenvector, then IFAILL(i) and */
- /* > IFAILL(i+1) are set to the same value. */
- /* > If SIDE = 'R', IFAILL is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IFAILR */
- /* > \verbatim */
- /* > IFAILR is INTEGER array, dimension (MM) */
- /* > If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
- /* > eigenvector in the i-th column of VR (corresponding to the */
- /* > eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
- /* > eigenvector converged satisfactorily. If the i-th and (i+1)th */
- /* > columns of VR hold a complex eigenvector, then IFAILR(i) and */
- /* > IFAILR(i+1) are set to the same value. */
- /* > If SIDE = 'L', IFAILR is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, i is the number of eigenvectors which */
- /* > failed to converge; see IFAILL and IFAILR for further */
- /* > details. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup realOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Each eigenvector is normalized so that the element of largest */
- /* > magnitude has magnitude 1; here the magnitude of a complex number */
- /* > (x,y) is taken to be |x|+|y|. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void shsein_(char *side, char *eigsrc, char *initv, logical *
- select, integer *n, real *h__, integer *ldh, real *wr, real *wi, real
- *vl, integer *ldvl, real *vr, integer *ldvr, integer *mm, integer *m,
- real *work, integer *ifaill, integer *ifailr, integer *info)
- {
- /* System generated locals */
- integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2;
- real r__1, r__2;
-
- /* Local variables */
- logical pair;
- real unfl;
- integer i__, k;
- extern logical lsame_(char *, char *);
- integer iinfo;
- logical leftv, bothv;
- real hnorm;
- integer kl, kr;
- extern real slamch_(char *);
- extern /* Subroutine */ void slaein_(logical *, logical *, integer *, real
- *, integer *, real *, real *, real *, real *, real *, integer *,
- real *, real *, real *, real *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- real bignum;
- extern real slanhs_(char *, integer *, real *, integer *, real *);
- extern logical sisnan_(real *);
- logical noinit;
- integer ldwork;
- logical rightv, fromqr;
- real smlnum;
- integer kln, ksi;
- real wki;
- integer ksr;
- real ulp, wkr, eps3;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters. */
-
- /* Parameter adjustments */
- --select;
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- --wr;
- --wi;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
- --ifaill;
- --ifailr;
-
- /* Function Body */
- bothv = lsame_(side, "B");
- rightv = lsame_(side, "R") || bothv;
- leftv = lsame_(side, "L") || bothv;
-
- fromqr = lsame_(eigsrc, "Q");
-
- noinit = lsame_(initv, "N");
-
- /* Set M to the number of columns required to store the selected */
- /* eigenvectors, and standardize the array SELECT. */
-
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- select[k] = FALSE_;
- } else {
- if (wi[k] == 0.f) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- select[k] = TRUE_;
- *m += 2;
- }
- }
- }
- /* L10: */
- }
-
- *info = 0;
- if (! rightv && ! leftv) {
- *info = -1;
- } else if (! fromqr && ! lsame_(eigsrc, "N")) {
- *info = -2;
- } else if (! noinit && ! lsame_(initv, "U")) {
- *info = -3;
- } else if (*n < 0) {
- *info = -5;
- } else if (*ldh < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldvl < 1 || leftv && *ldvl < *n) {
- *info = -11;
- } else if (*ldvr < 1 || rightv && *ldvr < *n) {
- *info = -13;
- } else if (*mm < *m) {
- *info = -14;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SHSEIN", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible. */
-
- if (*n == 0) {
- return;
- }
-
- /* Set machine-dependent constants. */
-
- unfl = slamch_("Safe minimum");
- ulp = slamch_("Precision");
- smlnum = unfl * (*n / ulp);
- bignum = (1.f - ulp) / smlnum;
-
- ldwork = *n + 1;
-
- kl = 1;
- kln = 0;
- if (fromqr) {
- kr = 0;
- } else {
- kr = *n;
- }
- ksr = 1;
-
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (select[k]) {
-
- /* Compute eigenvector(s) corresponding to W(K). */
-
- if (fromqr) {
-
- /* If affiliation of eigenvalues is known, check whether */
- /* the matrix splits. */
-
- /* Determine KL and KR such that 1 <= KL <= K <= KR <= N */
- /* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
- /* KR = N). */
-
- /* Then inverse iteration can be performed with the */
- /* submatrix H(KL:N,KL:N) for a left eigenvector, and with */
- /* the submatrix H(1:KR,1:KR) for a right eigenvector. */
-
- i__2 = kl + 1;
- for (i__ = k; i__ >= i__2; --i__) {
- if (h__[i__ + (i__ - 1) * h_dim1] == 0.f) {
- goto L30;
- }
- /* L20: */
- }
- L30:
- kl = i__;
- if (k > kr) {
- i__2 = *n - 1;
- for (i__ = k; i__ <= i__2; ++i__) {
- if (h__[i__ + 1 + i__ * h_dim1] == 0.f) {
- goto L50;
- }
- /* L40: */
- }
- L50:
- kr = i__;
- }
- }
-
- if (kl != kln) {
- kln = kl;
-
- /* Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
- /* has not ben computed before. */
-
- i__2 = kr - kl + 1;
- hnorm = slanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
- work[1]);
- if (sisnan_(&hnorm)) {
- *info = -6;
- return;
- } else if (hnorm > 0.f) {
- eps3 = hnorm * ulp;
- } else {
- eps3 = smlnum;
- }
- }
-
- /* Perturb eigenvalue if it is close to any previous */
- /* selected eigenvalues affiliated to the submatrix */
- /* H(KL:KR,KL:KR). Close roots are modified by EPS3. */
-
- wkr = wr[k];
- wki = wi[k];
- L60:
- i__2 = kl;
- for (i__ = k - 1; i__ >= i__2; --i__) {
- if (select[i__] && (r__1 = wr[i__] - wkr, abs(r__1)) + (r__2 =
- wi[i__] - wki, abs(r__2)) < eps3) {
- wkr += eps3;
- goto L60;
- }
- /* L70: */
- }
- wr[k] = wkr;
-
- pair = wki != 0.f;
- if (pair) {
- ksi = ksr + 1;
- } else {
- ksi = ksr;
- }
- if (leftv) {
-
- /* Compute left eigenvector. */
-
- i__2 = *n - kl + 1;
- slaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh,
- &wkr, &wki, &vl[kl + ksr * vl_dim1], &vl[kl + ksi *
- vl_dim1], &work[1], &ldwork, &work[*n * *n + *n + 1],
- &eps3, &smlnum, &bignum, &iinfo);
- if (iinfo > 0) {
- if (pair) {
- *info += 2;
- } else {
- ++(*info);
- }
- ifaill[ksr] = k;
- ifaill[ksi] = k;
- } else {
- ifaill[ksr] = 0;
- ifaill[ksi] = 0;
- }
- i__2 = kl - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- vl[i__ + ksr * vl_dim1] = 0.f;
- /* L80: */
- }
- if (pair) {
- i__2 = kl - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- vl[i__ + ksi * vl_dim1] = 0.f;
- /* L90: */
- }
- }
- }
- if (rightv) {
-
- /* Compute right eigenvector. */
-
- slaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wkr, &
- wki, &vr[ksr * vr_dim1 + 1], &vr[ksi * vr_dim1 + 1], &
- work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, &
- smlnum, &bignum, &iinfo);
- if (iinfo > 0) {
- if (pair) {
- *info += 2;
- } else {
- ++(*info);
- }
- ifailr[ksr] = k;
- ifailr[ksi] = k;
- } else {
- ifailr[ksr] = 0;
- ifailr[ksi] = 0;
- }
- i__2 = *n;
- for (i__ = kr + 1; i__ <= i__2; ++i__) {
- vr[i__ + ksr * vr_dim1] = 0.f;
- /* L100: */
- }
- if (pair) {
- i__2 = *n;
- for (i__ = kr + 1; i__ <= i__2; ++i__) {
- vr[i__ + ksi * vr_dim1] = 0.f;
- /* L110: */
- }
- }
- }
-
- if (pair) {
- ksr += 2;
- } else {
- ++ksr;
- }
- }
- /* L120: */
- }
-
- return;
-
- /* End of SHSEIN */
-
- } /* shsein_ */
|