|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__0 = 0;
- static real c_b57 = 0.f;
- static real c_b58 = 1.f;
-
- /* > \brief <b> SGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
- rices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SGGEVX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggevx.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggevx.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggevx.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, */
- /* ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, */
- /* IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, */
- /* RCONDV, WORK, LWORK, IWORK, BWORK, INFO ) */
-
- /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
- /* INTEGER IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
- /* REAL ABNRM, BBNRM */
- /* LOGICAL BWORK( * ) */
- /* INTEGER IWORK( * ) */
- /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
- /* $ B( LDB, * ), BETA( * ), LSCALE( * ), */
- /* $ RCONDE( * ), RCONDV( * ), RSCALE( * ), */
- /* $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
- /* > the generalized eigenvalues, and optionally, the left and/or right */
- /* > generalized eigenvectors. */
- /* > */
- /* > Optionally also, it computes a balancing transformation to improve */
- /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
- /* > LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
- /* > the eigenvalues (RCONDE), and reciprocal condition numbers for the */
- /* > right eigenvectors (RCONDV). */
- /* > */
- /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
- /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
- /* > singular. It is usually represented as the pair (alpha,beta), as */
- /* > there is a reasonable interpretation for beta=0, and even for both */
- /* > being zero. */
- /* > */
- /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
- /* > of (A,B) satisfies */
- /* > */
- /* > A * v(j) = lambda(j) * B * v(j) . */
- /* > */
- /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
- /* > of (A,B) satisfies */
- /* > */
- /* > u(j)**H * A = lambda(j) * u(j)**H * B. */
- /* > */
- /* > where u(j)**H is the conjugate-transpose of u(j). */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] BALANC */
- /* > \verbatim */
- /* > BALANC is CHARACTER*1 */
- /* > Specifies the balance option to be performed. */
- /* > = 'N': do not diagonally scale or permute; */
- /* > = 'P': permute only; */
- /* > = 'S': scale only; */
- /* > = 'B': both permute and scale. */
- /* > Computed reciprocal condition numbers will be for the */
- /* > matrices after permuting and/or balancing. Permuting does */
- /* > not change condition numbers (in exact arithmetic), but */
- /* > balancing does. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVL */
- /* > \verbatim */
- /* > JOBVL is CHARACTER*1 */
- /* > = 'N': do not compute the left generalized eigenvectors; */
- /* > = 'V': compute the left generalized eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVR */
- /* > \verbatim */
- /* > JOBVR is CHARACTER*1 */
- /* > = 'N': do not compute the right generalized eigenvectors; */
- /* > = 'V': compute the right generalized eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SENSE */
- /* > \verbatim */
- /* > SENSE is CHARACTER*1 */
- /* > Determines which reciprocal condition numbers are computed. */
- /* > = 'N': none are computed; */
- /* > = 'E': computed for eigenvalues only; */
- /* > = 'V': computed for eigenvectors only; */
- /* > = 'B': computed for eigenvalues and eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A, B, VL, and VR. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA, N) */
- /* > On entry, the matrix A in the pair (A,B). */
- /* > On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
- /* > or both, then A contains the first part of the real Schur */
- /* > form of the "balanced" versions of the input A and B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB, N) */
- /* > On entry, the matrix B in the pair (A,B). */
- /* > On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
- /* > or both, then B contains the second part of the real Schur */
- /* > form of the "balanced" versions of the input A and B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHAR */
- /* > \verbatim */
- /* > ALPHAR is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHAI */
- /* > \verbatim */
- /* > ALPHAI is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BETA */
- /* > \verbatim */
- /* > BETA is REAL array, dimension (N) */
- /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
- /* > be the generalized eigenvalues. If ALPHAI(j) is zero, then */
- /* > the j-th eigenvalue is real; if positive, then the j-th and */
- /* > (j+1)-st eigenvalues are a complex conjugate pair, with */
- /* > ALPHAI(j+1) negative. */
- /* > */
- /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
- /* > may easily over- or underflow, and BETA(j) may even be zero. */
- /* > Thus, the user should avoid naively computing the ratio */
- /* > ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */
- /* > than and usually comparable with norm(A) in magnitude, and */
- /* > BETA always less than and usually comparable with norm(B). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VL */
- /* > \verbatim */
- /* > VL is REAL array, dimension (LDVL,N) */
- /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
- /* > after another in the columns of VL, in the same order as */
- /* > their eigenvalues. If the j-th eigenvalue is real, then */
- /* > u(j) = VL(:,j), the j-th column of VL. If the j-th and */
- /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
- /* > u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
- /* > Each eigenvector will be scaled so the largest component have */
- /* > abs(real part) + abs(imag. part) = 1. */
- /* > Not referenced if JOBVL = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the matrix VL. LDVL >= 1, and */
- /* > if JOBVL = 'V', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VR */
- /* > \verbatim */
- /* > VR is REAL array, dimension (LDVR,N) */
- /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
- /* > after another in the columns of VR, in the same order as */
- /* > their eigenvalues. If the j-th eigenvalue is real, then */
- /* > v(j) = VR(:,j), the j-th column of VR. If the j-th and */
- /* > (j+1)-th eigenvalues form a complex conjugate pair, then */
- /* > v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
- /* > Each eigenvector will be scaled so the largest component have */
- /* > abs(real part) + abs(imag. part) = 1. */
- /* > Not referenced if JOBVR = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the matrix VR. LDVR >= 1, and */
- /* > if JOBVR = 'V', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > ILO and IHI are integer values such that on exit */
- /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
- /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
- /* > If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] LSCALE */
- /* > \verbatim */
- /* > LSCALE is REAL array, dimension (N) */
- /* > Details of the permutations and scaling factors applied */
- /* > to the left side of A and B. If PL(j) is the index of the */
- /* > row interchanged with row j, and DL(j) is the scaling */
- /* > factor applied to row j, then */
- /* > LSCALE(j) = PL(j) for j = 1,...,ILO-1 */
- /* > = DL(j) for j = ILO,...,IHI */
- /* > = PL(j) for j = IHI+1,...,N. */
- /* > The order in which the interchanges are made is N to IHI+1, */
- /* > then 1 to ILO-1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RSCALE */
- /* > \verbatim */
- /* > RSCALE is REAL array, dimension (N) */
- /* > Details of the permutations and scaling factors applied */
- /* > to the right side of A and B. If PR(j) is the index of the */
- /* > column interchanged with column j, and DR(j) is the scaling */
- /* > factor applied to column j, then */
- /* > RSCALE(j) = PR(j) for j = 1,...,ILO-1 */
- /* > = DR(j) for j = ILO,...,IHI */
- /* > = PR(j) for j = IHI+1,...,N */
- /* > The order in which the interchanges are made is N to IHI+1, */
- /* > then 1 to ILO-1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ABNRM */
- /* > \verbatim */
- /* > ABNRM is REAL */
- /* > The one-norm of the balanced matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BBNRM */
- /* > \verbatim */
- /* > BBNRM is REAL */
- /* > The one-norm of the balanced matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCONDE */
- /* > \verbatim */
- /* > RCONDE is REAL array, dimension (N) */
- /* > If SENSE = 'E' or 'B', the reciprocal condition numbers of */
- /* > the eigenvalues, stored in consecutive elements of the array. */
- /* > For a complex conjugate pair of eigenvalues two consecutive */
- /* > elements of RCONDE are set to the same value. Thus RCONDE(j), */
- /* > RCONDV(j), and the j-th columns of VL and VR all correspond */
- /* > to the j-th eigenpair. */
- /* > If SENSE = 'N' or 'V', RCONDE is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCONDV */
- /* > \verbatim */
- /* > RCONDV is REAL array, dimension (N) */
- /* > If SENSE = 'V' or 'B', the estimated reciprocal condition */
- /* > numbers of the eigenvectors, stored in consecutive elements */
- /* > of the array. For a complex eigenvector two consecutive */
- /* > elements of RCONDV are set to the same value. If the */
- /* > eigenvalues cannot be reordered to compute RCONDV(j), */
- /* > RCONDV(j) is set to 0; this can only occur when the true */
- /* > value would be very small anyway. */
- /* > If SENSE = 'N' or 'E', RCONDV is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
- /* > If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */
- /* > LWORK >= f2cmax(1,6*N). */
- /* > If SENSE = 'E', LWORK >= f2cmax(1,10*N). */
- /* > If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (N+6) */
- /* > If SENSE = 'E', IWORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BWORK */
- /* > \verbatim */
- /* > BWORK is LOGICAL array, dimension (N) */
- /* > If SENSE = 'N', BWORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > = 1,...,N: */
- /* > The QZ iteration failed. No eigenvectors have been */
- /* > calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
- /* > should be correct for j=INFO+1,...,N. */
- /* > > N: =N+1: other than QZ iteration failed in SHGEQZ. */
- /* > =N+2: error return from STGEVC. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date April 2012 */
-
- /* > \ingroup realGEeigen */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Balancing a matrix pair (A,B) includes, first, permuting rows and */
- /* > columns to isolate eigenvalues, second, applying diagonal similarity */
- /* > transformation to the rows and columns to make the rows and columns */
- /* > as close in norm as possible. The computed reciprocal condition */
- /* > numbers correspond to the balanced matrix. Permuting rows and columns */
- /* > will not change the condition numbers (in exact arithmetic) but */
- /* > diagonal scaling will. For further explanation of balancing, see */
- /* > section 4.11.1.2 of LAPACK Users' Guide. */
- /* > */
- /* > An approximate error bound on the chordal distance between the i-th */
- /* > computed generalized eigenvalue w and the corresponding exact */
- /* > eigenvalue lambda is */
- /* > */
- /* > chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
- /* > */
- /* > An approximate error bound for the angle between the i-th computed */
- /* > eigenvector VL(i) or VR(i) is given by */
- /* > */
- /* > EPS * norm(ABNRM, BBNRM) / DIF(i). */
- /* > */
- /* > For further explanation of the reciprocal condition numbers RCONDE */
- /* > and RCONDV, see section 4.11 of LAPACK User's Guide. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void sggevx_(char *balanc, char *jobvl, char *jobvr, char *
- sense, integer *n, real *a, integer *lda, real *b, integer *ldb, real
- *alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr,
- integer *ldvr, integer *ilo, integer *ihi, real *lscale, real *rscale,
- real *abnrm, real *bbnrm, real *rconde, real *rcondv, real *work,
- integer *lwork, integer *iwork, logical *bwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2;
- real r__1, r__2, r__3, r__4;
-
- /* Local variables */
- logical pair;
- real anrm, bnrm;
- integer ierr, itau;
- real temp;
- logical ilvl, ilvr;
- integer iwrk, iwrk1, i__, j, m;
- extern logical lsame_(char *, char *);
- integer icols;
- logical noscl;
- integer irows, jc;
- extern /* Subroutine */ void slabad_(real *, real *);
- integer in, mm, jr;
- extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, real *, integer *, integer *
- ), sggbal_(char *, integer *, real *, integer *,
- real *, integer *, integer *, integer *, real *, real *, real *,
- integer *);
- logical ilascl, ilbscl;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern void sgghrd_(
- char *, char *, integer *, integer *, integer *, real *, integer *
- , real *, integer *, real *, integer *, real *, integer *,
- integer *);
- logical ldumma[1];
- char chtemp[1];
- real bignum;
- extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, real *, integer *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern real slamch_(char *);
- integer ijobvl;
- extern real slange_(char *, integer *, integer *, real *, integer *, real
- *);
- extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer
- *, real *, real *, integer *, integer *);
- integer ijobvr;
- extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
- integer *, real *, integer *);
- logical wantsb;
- extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
- real *, real *, integer *);
- real anrmto;
- logical wantse;
- real bnrmto;
- extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *,
- integer *, integer *, real *, integer *, real *, integer *, real *
- , real *, real *, real *, integer *, real *, integer *, real *,
- integer *, integer *), stgevc_(char *,
- char *, logical *, integer *, real *, integer *, real *, integer *
- , real *, integer *, real *, integer *, integer *, integer *,
- real *, integer *), stgsna_(char *, char *,
- logical *, integer *, real *, integer *, real *, integer *, real *
- , integer *, real *, integer *, real *, real *, integer *,
- integer *, real *, integer *, integer *, integer *);
- integer minwrk, maxwrk;
- logical wantsn;
- real smlnum;
- extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
- *, integer *, real *, real *, integer *, integer *);
- logical lquery, wantsv;
- extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
- integer *, real *, integer *, real *, real *, integer *, real *,
- integer *, integer *);
- real eps;
- logical ilv;
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* April 2012 */
-
-
- /* ===================================================================== */
-
-
- /* Decode the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --alphar;
- --alphai;
- --beta;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --lscale;
- --rscale;
- --rconde;
- --rcondv;
- --work;
- --iwork;
- --bwork;
-
- /* Function Body */
- if (lsame_(jobvl, "N")) {
- ijobvl = 1;
- ilvl = FALSE_;
- } else if (lsame_(jobvl, "V")) {
- ijobvl = 2;
- ilvl = TRUE_;
- } else {
- ijobvl = -1;
- ilvl = FALSE_;
- }
-
- if (lsame_(jobvr, "N")) {
- ijobvr = 1;
- ilvr = FALSE_;
- } else if (lsame_(jobvr, "V")) {
- ijobvr = 2;
- ilvr = TRUE_;
- } else {
- ijobvr = -1;
- ilvr = FALSE_;
- }
- ilv = ilvl || ilvr;
-
- noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
- wantsn = lsame_(sense, "N");
- wantse = lsame_(sense, "E");
- wantsv = lsame_(sense, "V");
- wantsb = lsame_(sense, "B");
-
- /* Test the input arguments */
-
- *info = 0;
- lquery = *lwork == -1;
- if (! (noscl || lsame_(balanc, "S") || lsame_(
- balanc, "B"))) {
- *info = -1;
- } else if (ijobvl <= 0) {
- *info = -2;
- } else if (ijobvr <= 0) {
- *info = -3;
- } else if (! (wantsn || wantse || wantsb || wantsv)) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -9;
- } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
- *info = -14;
- } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
- *info = -16;
- }
-
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV. The workspace is */
- /* computed assuming ILO = 1 and IHI = N, the worst case.) */
-
- if (*info == 0) {
- if (*n == 0) {
- minwrk = 1;
- maxwrk = 1;
- } else {
- if (noscl && ! ilv) {
- minwrk = *n << 1;
- } else {
- minwrk = *n * 6;
- }
- if (wantse) {
- minwrk = *n * 10;
- } else if (wantsv || wantsb) {
- minwrk = (*n << 1) * (*n + 4) + 16;
- }
- maxwrk = minwrk;
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &
- c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, &
- c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- if (ilvl) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORGQR",
- " ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__1,i__2);
- }
- }
- work[1] = (real) maxwrk;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -26;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SGGEVX", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
-
- /* Get machine constants */
-
- eps = slamch_("P");
- smlnum = slamch_("S");
- bignum = 1.f / smlnum;
- slabad_(&smlnum, &bignum);
- smlnum = sqrt(smlnum) / eps;
- bignum = 1.f / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
- ilascl = FALSE_;
- if (anrm > 0.f && anrm < smlnum) {
- anrmto = smlnum;
- ilascl = TRUE_;
- } else if (anrm > bignum) {
- anrmto = bignum;
- ilascl = TRUE_;
- }
- if (ilascl) {
- slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
- ierr);
- }
-
- /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
- ilbscl = FALSE_;
- if (bnrm > 0.f && bnrm < smlnum) {
- bnrmto = smlnum;
- ilbscl = TRUE_;
- } else if (bnrm > bignum) {
- bnrmto = bignum;
- ilbscl = TRUE_;
- }
- if (ilbscl) {
- slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
- ierr);
- }
-
- /* Permute and/or balance the matrix pair (A,B) */
- /* (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
-
- sggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
- lscale[1], &rscale[1], &work[1], &ierr);
-
- /* Compute ABNRM and BBNRM */
-
- *abnrm = slange_("1", n, n, &a[a_offset], lda, &work[1]);
- if (ilascl) {
- work[1] = *abnrm;
- slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
- c__1, &ierr);
- *abnrm = work[1];
- }
-
- *bbnrm = slange_("1", n, n, &b[b_offset], ldb, &work[1]);
- if (ilbscl) {
- work[1] = *bbnrm;
- slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
- c__1, &ierr);
- *bbnrm = work[1];
- }
-
- /* Reduce B to triangular form (QR decomposition of B) */
- /* (Workspace: need N, prefer N*NB ) */
-
- irows = *ihi + 1 - *ilo;
- if (ilv || ! wantsn) {
- icols = *n + 1 - *ilo;
- } else {
- icols = irows;
- }
- itau = 1;
- iwrk = itau + irows;
- i__1 = *lwork + 1 - iwrk;
- sgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
- iwrk], &i__1, &ierr);
-
- /* Apply the orthogonal transformation to A */
- /* (Workspace: need N, prefer N*NB) */
-
- i__1 = *lwork + 1 - iwrk;
- sormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
- work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
- ierr);
-
- /* Initialize VL and/or VR */
- /* (Workspace: need N, prefer N*NB) */
-
- if (ilvl) {
- slaset_("Full", n, n, &c_b57, &c_b58, &vl[vl_offset], ldvl)
- ;
- if (irows > 1) {
- i__1 = irows - 1;
- i__2 = irows - 1;
- slacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
- *ilo + 1 + *ilo * vl_dim1], ldvl);
- }
- i__1 = *lwork + 1 - iwrk;
- sorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
- work[itau], &work[iwrk], &i__1, &ierr);
- }
-
- if (ilvr) {
- slaset_("Full", n, n, &c_b57, &c_b58, &vr[vr_offset], ldvr)
- ;
- }
-
- /* Reduce to generalized Hessenberg form */
- /* (Workspace: none needed) */
-
- if (ilv || ! wantsn) {
-
- /* Eigenvectors requested -- work on whole matrix. */
-
- sgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
- } else {
- sgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1],
- lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
- vr_offset], ldvr, &ierr);
- }
-
- /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
- /* Schur forms and Schur vectors) */
- /* (Workspace: need N) */
-
- if (ilv || ! wantsn) {
- *(unsigned char *)chtemp = 'S';
- } else {
- *(unsigned char *)chtemp = 'E';
- }
-
- shgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
- , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
- vr[vr_offset], ldvr, &work[1], lwork, &ierr);
- if (ierr != 0) {
- if (ierr > 0 && ierr <= *n) {
- *info = ierr;
- } else if (ierr > *n && ierr <= *n << 1) {
- *info = ierr - *n;
- } else {
- *info = *n + 1;
- }
- goto L130;
- }
-
- /* Compute Eigenvectors and estimate condition numbers if desired */
- /* (Workspace: STGEVC: need 6*N */
- /* STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */
- /* need N otherwise ) */
-
- if (ilv || ! wantsn) {
- if (ilv) {
- if (ilvl) {
- if (ilvr) {
- *(unsigned char *)chtemp = 'B';
- } else {
- *(unsigned char *)chtemp = 'L';
- }
- } else {
- *(unsigned char *)chtemp = 'R';
- }
-
- stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset],
- ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
- work[1], &ierr);
- if (ierr != 0) {
- *info = *n + 2;
- goto L130;
- }
- }
-
- if (! wantsn) {
-
- /* compute eigenvectors (STGEVC) and estimate condition */
- /* numbers (STGSNA). Note that the definition of the condition */
- /* number is not invariant under transformation (u,v) to */
- /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
- /* Schur form (S,T), Q and Z are orthogonal matrices. In order */
- /* to avoid using extra 2*N*N workspace, we have to recalculate */
- /* eigenvectors and estimate one condition numbers at a time. */
-
- pair = FALSE_;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- if (pair) {
- pair = FALSE_;
- goto L20;
- }
- mm = 1;
- if (i__ < *n) {
- if (a[i__ + 1 + i__ * a_dim1] != 0.f) {
- pair = TRUE_;
- mm = 2;
- }
- }
-
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- bwork[j] = FALSE_;
- /* L10: */
- }
- if (mm == 1) {
- bwork[i__] = TRUE_;
- } else if (mm == 2) {
- bwork[i__] = TRUE_;
- bwork[i__ + 1] = TRUE_;
- }
-
- iwrk = mm * *n + 1;
- iwrk1 = iwrk + mm * *n;
-
- /* Compute a pair of left and right eigenvectors. */
- /* (compute workspace: need up to 4*N + 6*N) */
-
- if (wantse || wantsb) {
- stgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
- b_offset], ldb, &work[1], n, &work[iwrk], n, &mm,
- &m, &work[iwrk1], &ierr);
- if (ierr != 0) {
- *info = *n + 2;
- goto L130;
- }
- }
-
- i__2 = *lwork - iwrk1 + 1;
- stgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
- b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
- i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
- iwork[1], &ierr);
-
- L20:
- ;
- }
- }
- }
-
- /* Undo balancing on VL and VR and normalization */
- /* (Workspace: none needed) */
-
- if (ilvl) {
- sggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
- vl_offset], ldvl, &ierr);
-
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- if (alphai[jc] < 0.f) {
- goto L70;
- }
- temp = 0.f;
- if (alphai[jc] == 0.f) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1], abs(
- r__1));
- temp = f2cmax(r__2,r__3);
- /* L30: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1], abs(
- r__1)) + (r__2 = vl[jr + (jc + 1) * vl_dim1], abs(
- r__2));
- temp = f2cmax(r__3,r__4);
- /* L40: */
- }
- }
- if (temp < smlnum) {
- goto L70;
- }
- temp = 1.f / temp;
- if (alphai[jc] == 0.f) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vl[jr + jc * vl_dim1] *= temp;
- /* L50: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vl[jr + jc * vl_dim1] *= temp;
- vl[jr + (jc + 1) * vl_dim1] *= temp;
- /* L60: */
- }
- }
- L70:
- ;
- }
- }
- if (ilvr) {
- sggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
- vr_offset], ldvr, &ierr);
- i__1 = *n;
- for (jc = 1; jc <= i__1; ++jc) {
- if (alphai[jc] < 0.f) {
- goto L120;
- }
- temp = 0.f;
- if (alphai[jc] == 0.f) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1], abs(
- r__1));
- temp = f2cmax(r__2,r__3);
- /* L80: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- /* Computing MAX */
- r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1], abs(
- r__1)) + (r__2 = vr[jr + (jc + 1) * vr_dim1], abs(
- r__2));
- temp = f2cmax(r__3,r__4);
- /* L90: */
- }
- }
- if (temp < smlnum) {
- goto L120;
- }
- temp = 1.f / temp;
- if (alphai[jc] == 0.f) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + jc * vr_dim1] *= temp;
- /* L100: */
- }
- } else {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + jc * vr_dim1] *= temp;
- vr[jr + (jc + 1) * vr_dim1] *= temp;
- /* L110: */
- }
- }
- L120:
- ;
- }
- }
-
- /* Undo scaling if necessary */
-
- L130:
-
- if (ilascl) {
- slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
- ierr);
- slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
- ierr);
- }
-
- if (ilbscl) {
- slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
- ierr);
- }
-
- work[1] = (real) maxwrk;
- return;
-
- /* End of SGGEVX */
-
- } /* sggevx_ */
|