|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c_n1 = -1;
- static integer c__1 = 1;
- static integer c__0 = 0;
- static real c_b36 = 0.f;
- static real c_b37 = 1.f;
-
- /* > \brief <b> SGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
- for GE matrices (blocked algorithm)</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SGGES3 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgges3.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgges3.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgges3.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, */
- /* $ LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, */
- /* $ VSR, LDVSR, WORK, LWORK, BWORK, INFO ) */
-
- /* CHARACTER JOBVSL, JOBVSR, SORT */
- /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
- /* LOGICAL BWORK( * ) */
- /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
- /* $ B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
- /* $ VSR( LDVSR, * ), WORK( * ) */
- /* LOGICAL SELCTG */
- /* EXTERNAL SELCTG */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B), */
- /* > the generalized eigenvalues, the generalized real Schur form (S,T), */
- /* > optionally, the left and/or right matrices of Schur vectors (VSL and */
- /* > VSR). This gives the generalized Schur factorization */
- /* > */
- /* > (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) */
- /* > */
- /* > Optionally, it also orders the eigenvalues so that a selected cluster */
- /* > of eigenvalues appears in the leading diagonal blocks of the upper */
- /* > quasi-triangular matrix S and the upper triangular matrix T.The */
- /* > leading columns of VSL and VSR then form an orthonormal basis for the */
- /* > corresponding left and right eigenspaces (deflating subspaces). */
- /* > */
- /* > (If only the generalized eigenvalues are needed, use the driver */
- /* > SGGEV instead, which is faster.) */
- /* > */
- /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
- /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
- /* > usually represented as the pair (alpha,beta), as there is a */
- /* > reasonable interpretation for beta=0 or both being zero. */
- /* > */
- /* > A pair of matrices (S,T) is in generalized real Schur form if T is */
- /* > upper triangular with non-negative diagonal and S is block upper */
- /* > triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
- /* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
- /* > "standardized" by making the corresponding elements of T have the */
- /* > form: */
- /* > [ a 0 ] */
- /* > [ 0 b ] */
- /* > */
- /* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
- /* > complex conjugate pair of generalized eigenvalues. */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBVSL */
- /* > \verbatim */
- /* > JOBVSL is CHARACTER*1 */
- /* > = 'N': do not compute the left Schur vectors; */
- /* > = 'V': compute the left Schur vectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVSR */
- /* > \verbatim */
- /* > JOBVSR is CHARACTER*1 */
- /* > = 'N': do not compute the right Schur vectors; */
- /* > = 'V': compute the right Schur vectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SORT */
- /* > \verbatim */
- /* > SORT is CHARACTER*1 */
- /* > Specifies whether or not to order the eigenvalues on the */
- /* > diagonal of the generalized Schur form. */
- /* > = 'N': Eigenvalues are not ordered; */
- /* > = 'S': Eigenvalues are ordered (see SELCTG); */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELCTG */
- /* > \verbatim */
- /* > SELCTG is a LOGICAL FUNCTION of three REAL arguments */
- /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
- /* > If SORT = 'N', SELCTG is not referenced. */
- /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
- /* > to the top left of the Schur form. */
- /* > An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
- /* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
- /* > one of a complex conjugate pair of eigenvalues is selected, */
- /* > then both complex eigenvalues are selected. */
- /* > */
- /* > Note that in the ill-conditioned case, a selected complex */
- /* > eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), */
- /* > BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 */
- /* > in this case. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA, N) */
- /* > On entry, the first of the pair of matrices. */
- /* > On exit, A has been overwritten by its generalized Schur */
- /* > form S. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB, N) */
- /* > On entry, the second of the pair of matrices. */
- /* > On exit, B has been overwritten by its generalized Schur */
- /* > form T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SDIM */
- /* > \verbatim */
- /* > SDIM is INTEGER */
- /* > If SORT = 'N', SDIM = 0. */
- /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
- /* > for which SELCTG is true. (Complex conjugate pairs for which */
- /* > SELCTG is true for either eigenvalue count as 2.) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHAR */
- /* > \verbatim */
- /* > ALPHAR is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHAI */
- /* > \verbatim */
- /* > ALPHAI is REAL array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BETA */
- /* > \verbatim */
- /* > BETA is REAL array, dimension (N) */
- /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
- /* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, */
- /* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
- /* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
- /* > the real Schur form of (A,B) were further reduced to */
- /* > triangular form using 2-by-2 complex unitary transformations. */
- /* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
- /* > positive, then the j-th and (j+1)-st eigenvalues are a */
- /* > complex conjugate pair, with ALPHAI(j+1) negative. */
- /* > */
- /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
- /* > may easily over- or underflow, and BETA(j) may even be zero. */
- /* > Thus, the user should avoid naively computing the ratio. */
- /* > However, ALPHAR and ALPHAI will be always less than and */
- /* > usually comparable with norm(A) in magnitude, and BETA always */
- /* > less than and usually comparable with norm(B). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VSL */
- /* > \verbatim */
- /* > VSL is REAL array, dimension (LDVSL,N) */
- /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
- /* > Not referenced if JOBVSL = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVSL */
- /* > \verbatim */
- /* > LDVSL is INTEGER */
- /* > The leading dimension of the matrix VSL. LDVSL >=1, and */
- /* > if JOBVSL = 'V', LDVSL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VSR */
- /* > \verbatim */
- /* > VSR is REAL array, dimension (LDVSR,N) */
- /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
- /* > Not referenced if JOBVSR = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVSR */
- /* > \verbatim */
- /* > LDVSR is INTEGER */
- /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
- /* > if JOBVSR = 'V', LDVSR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BWORK */
- /* > \verbatim */
- /* > BWORK is LOGICAL array, dimension (N) */
- /* > Not referenced if SORT = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > = 1,...,N: */
- /* > The QZ iteration failed. (A,B) are not in Schur */
- /* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
- /* > be correct for j=INFO+1,...,N. */
- /* > > N: =N+1: other than QZ iteration failed in SHGEQZ. */
- /* > =N+2: after reordering, roundoff changed values of */
- /* > some complex eigenvalues so that leading */
- /* > eigenvalues in the Generalized Schur form no */
- /* > longer satisfy SELCTG=.TRUE. This could also */
- /* > be caused due to scaling. */
- /* > =N+3: reordering failed in STGSEN. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date January 2015 */
-
- /* > \ingroup realGEeigen */
-
- /* ===================================================================== */
- /* Subroutine */ void sgges3_(char *jobvsl, char *jobvsr, char *sort, L_fp
- selctg, integer *n, real *a, integer *lda, real *b, integer *ldb,
- integer *sdim, real *alphar, real *alphai, real *beta, real *vsl,
- integer *ldvsl, real *vsr, integer *ldvsr, real *work, integer *lwork,
- logical *bwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
- vsr_dim1, vsr_offset, i__1, i__2;
- real r__1;
-
- /* Local variables */
- real anrm, bnrm;
- integer idum[1], ierr, itau, iwrk;
- real pvsl, pvsr;
- integer i__;
- extern logical lsame_(char *, char *);
- integer ileft, icols;
- logical cursl, ilvsl, ilvsr;
- integer irows;
- extern /* Subroutine */ void sgghd3_(char *, char *, integer *, integer *,
- integer *, real *, integer *, real *, integer *, real *, integer *
- , real *, integer *, real *, integer *, integer *)
- ;
- logical lst2sl;
- extern /* Subroutine */ void slabad_(real *, real *);
- integer ip;
- extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, real *, integer *, integer *
- ), sggbal_(char *, integer *, real *, integer *,
- real *, integer *, integer *, integer *, real *, real *, real *,
- integer *);
- logical ilascl, ilbscl;
- extern real slamch_(char *), slange_(char *, integer *, integer *,
- real *, integer *, real *);
- real safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- real safmax, bignum;
- extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, real *, integer *, integer *);
- integer ijobvl, iright;
- extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer
- *, real *, real *, integer *, integer *);
- integer ijobvr;
- extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
- integer *, real *, integer *), slaset_(char *, integer *,
- integer *, real *, real *, real *, integer *);
- real anrmto, bnrmto;
- logical lastsl;
- extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *,
- integer *, integer *, real *, integer *, real *, integer *, real *
- , real *, real *, real *, integer *, real *, integer *, real *,
- integer *, integer *), stgsen_(integer *,
- logical *, logical *, logical *, integer *, real *, integer *,
- real *, integer *, real *, real *, real *, real *, integer *,
- real *, integer *, integer *, real *, real *, real *, real *,
- integer *, integer *, integer *, integer *);
- real smlnum;
- extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real
- *, integer *, real *, real *, integer *, integer *);
- logical wantst, lquery;
- integer lwkopt;
- extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
- integer *, real *, integer *, real *, real *, integer *, real *,
- integer *, integer *);
- real dif[2];
- integer ihi, ilo;
- real eps;
-
-
- /* -- LAPACK driver routine (version 3.6.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* January 2015 */
-
-
- /* ===================================================================== */
-
-
- /* Decode the input arguments */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --alphar;
- --alphai;
- --beta;
- vsl_dim1 = *ldvsl;
- vsl_offset = 1 + vsl_dim1 * 1;
- vsl -= vsl_offset;
- vsr_dim1 = *ldvsr;
- vsr_offset = 1 + vsr_dim1 * 1;
- vsr -= vsr_offset;
- --work;
- --bwork;
-
- /* Function Body */
- if (lsame_(jobvsl, "N")) {
- ijobvl = 1;
- ilvsl = FALSE_;
- } else if (lsame_(jobvsl, "V")) {
- ijobvl = 2;
- ilvsl = TRUE_;
- } else {
- ijobvl = -1;
- ilvsl = FALSE_;
- }
-
- if (lsame_(jobvsr, "N")) {
- ijobvr = 1;
- ilvsr = FALSE_;
- } else if (lsame_(jobvsr, "V")) {
- ijobvr = 2;
- ilvsr = TRUE_;
- } else {
- ijobvr = -1;
- ilvsr = FALSE_;
- }
-
- wantst = lsame_(sort, "S");
-
- /* Test the input arguments */
-
- *info = 0;
- lquery = *lwork == -1;
- if (ijobvl <= 0) {
- *info = -1;
- } else if (ijobvr <= 0) {
- *info = -2;
- } else if (! wantst && ! lsame_(sort, "N")) {
- *info = -3;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < f2cmax(1,*n)) {
- *info = -7;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -9;
- } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
- *info = -15;
- } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
- *info = -17;
- } else if (*lwork < *n * 6 + 16 && ! lquery) {
- *info = -19;
- }
-
- /* Compute workspace */
-
- if (*info == 0) {
- sgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
- /* Computing MAX */
- i__1 = *n * 6 + 16, i__2 = *n * 3 + (integer) work[1];
- lwkopt = f2cmax(i__1,i__2);
- sormqr_("L", "T", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset],
- lda, &work[1], &c_n1, &ierr);
- /* Computing MAX */
- i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
- lwkopt = f2cmax(i__1,i__2);
- if (ilvsl) {
- sorgqr_(n, n, n, &vsl[vsl_offset], ldvsl, &work[1], &work[1], &
- c_n1, &ierr);
- /* Computing MAX */
- i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
- lwkopt = f2cmax(i__1,i__2);
- }
- sgghd3_(jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[b_offset],
- ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[
- 1], &c_n1, &ierr);
- /* Computing MAX */
- i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
- lwkopt = f2cmax(i__1,i__2);
- shgeqz_("S", jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[
- b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
- vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[1], &c_n1,
- &ierr);
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
- lwkopt = f2cmax(i__1,i__2);
- if (wantst) {
- stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &
- b[b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
- vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl,
- &pvsr, dif, &work[1], &c_n1, idum, &c__1, &ierr);
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
- lwkopt = f2cmax(i__1,i__2);
- }
- work[1] = (real) lwkopt;
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SGGES3 ", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- *sdim = 0;
- return;
- }
-
- /* Get machine constants */
-
- eps = slamch_("P");
- safmin = slamch_("S");
- safmax = 1.f / safmin;
- slabad_(&safmin, &safmax);
- smlnum = sqrt(safmin) / eps;
- bignum = 1.f / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
- ilascl = FALSE_;
- if (anrm > 0.f && anrm < smlnum) {
- anrmto = smlnum;
- ilascl = TRUE_;
- } else if (anrm > bignum) {
- anrmto = bignum;
- ilascl = TRUE_;
- }
- if (ilascl) {
- slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
- ierr);
- }
-
- /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
- ilbscl = FALSE_;
- if (bnrm > 0.f && bnrm < smlnum) {
- bnrmto = smlnum;
- ilbscl = TRUE_;
- } else if (bnrm > bignum) {
- bnrmto = bignum;
- ilbscl = TRUE_;
- }
- if (ilbscl) {
- slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
- ierr);
- }
-
- /* Permute the matrix to make it more nearly triangular */
-
- ileft = 1;
- iright = *n + 1;
- iwrk = iright + *n;
- sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
- ileft], &work[iright], &work[iwrk], &ierr);
-
- /* Reduce B to triangular form (QR decomposition of B) */
-
- irows = ihi + 1 - ilo;
- icols = *n + 1 - ilo;
- itau = iwrk;
- iwrk = itau + irows;
- i__1 = *lwork + 1 - iwrk;
- sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
- iwrk], &i__1, &ierr);
-
- /* Apply the orthogonal transformation to matrix A */
-
- i__1 = *lwork + 1 - iwrk;
- sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
- work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
- ierr);
-
- /* Initialize VSL */
-
- if (ilvsl) {
- slaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);
- if (irows > 1) {
- i__1 = irows - 1;
- i__2 = irows - 1;
- slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
- ilo + 1 + ilo * vsl_dim1], ldvsl);
- }
- i__1 = *lwork + 1 - iwrk;
- sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
- work[itau], &work[iwrk], &i__1, &ierr);
- }
-
- /* Initialize VSR */
-
- if (ilvsr) {
- slaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);
- }
-
- /* Reduce to generalized Hessenberg form */
-
- i__1 = *lwork + 1 - iwrk;
- sgghd3_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk]
- , &i__1, &ierr);
-
- /* Perform QZ algorithm, computing Schur vectors if desired */
-
- iwrk = itau;
- i__1 = *lwork + 1 - iwrk;
- shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
- b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
- , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
- if (ierr != 0) {
- if (ierr > 0 && ierr <= *n) {
- *info = ierr;
- } else if (ierr > *n && ierr <= *n << 1) {
- *info = ierr - *n;
- } else {
- *info = *n + 1;
- }
- goto L40;
- }
-
- /* Sort eigenvalues ALPHA/BETA if desired */
-
- *sdim = 0;
- if (wantst) {
-
- /* Undo scaling on eigenvalues before SELCTGing */
-
- if (ilascl) {
- slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
- n, &ierr);
- slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
- n, &ierr);
- }
- if (ilbscl) {
- slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
- &ierr);
- }
-
- /* Select eigenvalues */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
- /* L10: */
- }
-
- i__1 = *lwork - iwrk + 1;
- stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
- b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
- vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &
- pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr);
- if (ierr == 1) {
- *info = *n + 3;
- }
-
- }
-
- /* Apply back-permutation to VSL and VSR */
-
- if (ilvsl) {
- sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
- vsl_offset], ldvsl, &ierr);
- }
-
- if (ilvsr) {
- sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
- vsr_offset], ldvsr, &ierr);
- }
-
- /* Check if unscaling would cause over/underflow, if so, rescale */
- /* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
- /* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
-
- if (ilascl) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (alphai[i__] != 0.f) {
- if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
- i__] > anrm / anrmto) {
- work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__],
- abs(r__1));
- beta[i__] *= work[1];
- alphar[i__] *= work[1];
- alphai[i__] *= work[1];
- } else if (alphai[i__] / safmax > anrmto / anrm || safmin /
- alphai[i__] > anrm / anrmto) {
- work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
- i__], abs(r__1));
- beta[i__] *= work[1];
- alphar[i__] *= work[1];
- alphai[i__] *= work[1];
- }
- }
- /* L50: */
- }
- }
-
- if (ilbscl) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (alphai[i__] != 0.f) {
- if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
- > bnrm / bnrmto) {
- work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
- r__1));
- beta[i__] *= work[1];
- alphar[i__] *= work[1];
- alphai[i__] *= work[1];
- }
- }
- /* L60: */
- }
- }
-
- /* Undo scaling */
-
- if (ilascl) {
- slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
- ierr);
- slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
- ierr);
- slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
- ierr);
- }
-
- if (ilbscl) {
- slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
- ierr);
- slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
- ierr);
- }
-
- if (wantst) {
-
- /* Check if reordering is correct */
-
- lastsl = TRUE_;
- lst2sl = TRUE_;
- *sdim = 0;
- ip = 0;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
- if (alphai[i__] == 0.f) {
- if (cursl) {
- ++(*sdim);
- }
- ip = 0;
- if (cursl && ! lastsl) {
- *info = *n + 2;
- }
- } else {
- if (ip == 1) {
-
- /* Last eigenvalue of conjugate pair */
-
- cursl = cursl || lastsl;
- lastsl = cursl;
- if (cursl) {
- *sdim += 2;
- }
- ip = -1;
- if (cursl && ! lst2sl) {
- *info = *n + 2;
- }
- } else {
-
- /* First eigenvalue of conjugate pair */
-
- ip = 1;
- }
- }
- lst2sl = lastsl;
- lastsl = cursl;
- /* L30: */
- }
-
- }
-
- L40:
-
- work[1] = (real) lwkopt;
-
- return;
-
- /* End of SGGES3 */
-
- } /* sgges3_ */
|