|
- *> \brief \b SGGBAK
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGGBAK + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggbak.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggbak.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggbak.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
- * LDV, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOB, SIDE
- * INTEGER IHI, ILO, INFO, LDV, M, N
- * ..
- * .. Array Arguments ..
- * REAL LSCALE( * ), RSCALE( * ), V( LDV, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGGBAK forms the right or left eigenvectors of a real generalized
- *> eigenvalue problem A*x = lambda*B*x, by backward transformation on
- *> the computed eigenvectors of the balanced pair of matrices output by
- *> SGGBAL.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOB
- *> \verbatim
- *> JOB is CHARACTER*1
- *> Specifies the type of backward transformation required:
- *> = 'N': do nothing, return immediately;
- *> = 'P': do backward transformation for permutation only;
- *> = 'S': do backward transformation for scaling only;
- *> = 'B': do backward transformations for both permutation and
- *> scaling.
- *> JOB must be the same as the argument JOB supplied to SGGBAL.
- *> \endverbatim
- *>
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'R': V contains right eigenvectors;
- *> = 'L': V contains left eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of rows of the matrix V. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ILO
- *> \verbatim
- *> ILO is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHI
- *> \verbatim
- *> IHI is INTEGER
- *> The integers ILO and IHI determined by SGGBAL.
- *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
- *> \endverbatim
- *>
- *> \param[in] LSCALE
- *> \verbatim
- *> LSCALE is REAL array, dimension (N)
- *> Details of the permutations and/or scaling factors applied
- *> to the left side of A and B, as returned by SGGBAL.
- *> \endverbatim
- *>
- *> \param[in] RSCALE
- *> \verbatim
- *> RSCALE is REAL array, dimension (N)
- *> Details of the permutations and/or scaling factors applied
- *> to the right side of A and B, as returned by SGGBAL.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of columns of the matrix V. M >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] V
- *> \verbatim
- *> V is REAL array, dimension (LDV,M)
- *> On entry, the matrix of right or left eigenvectors to be
- *> transformed, as returned by STGEVC.
- *> On exit, V is overwritten by the transformed eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the matrix V. LDV >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realGBcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> See R.C. Ward, Balancing the generalized eigenvalue problem,
- *> SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SGGBAK( JOB, SIDE, N, ILO, IHI, LSCALE, RSCALE, M, V,
- $ LDV, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOB, SIDE
- INTEGER IHI, ILO, INFO, LDV, M, N
- * ..
- * .. Array Arguments ..
- REAL LSCALE( * ), RSCALE( * ), V( LDV, * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL LEFTV, RIGHTV
- INTEGER I, K
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SSCAL, SSWAP, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- RIGHTV = LSAME( SIDE, 'R' )
- LEFTV = LSAME( SIDE, 'L' )
- *
- INFO = 0
- IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
- $ .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( ILO.LT.1 ) THEN
- INFO = -4
- ELSE IF( N.EQ.0 .AND. IHI.EQ.0 .AND. ILO.NE.1 ) THEN
- INFO = -4
- ELSE IF( N.GT.0 .AND. ( IHI.LT.ILO .OR. IHI.GT.MAX( 1, N ) ) )
- $ THEN
- INFO = -5
- ELSE IF( N.EQ.0 .AND. ILO.EQ.1 .AND. IHI.NE.0 ) THEN
- INFO = -5
- ELSE IF( M.LT.0 ) THEN
- INFO = -8
- ELSE IF( LDV.LT.MAX( 1, N ) ) THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGGBAK', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- IF( M.EQ.0 )
- $ RETURN
- IF( LSAME( JOB, 'N' ) )
- $ RETURN
- *
- IF( ILO.EQ.IHI )
- $ GO TO 30
- *
- * Backward balance
- *
- IF( LSAME( JOB, 'S' ) .OR. LSAME( JOB, 'B' ) ) THEN
- *
- * Backward transformation on right eigenvectors
- *
- IF( RIGHTV ) THEN
- DO 10 I = ILO, IHI
- CALL SSCAL( M, RSCALE( I ), V( I, 1 ), LDV )
- 10 CONTINUE
- END IF
- *
- * Backward transformation on left eigenvectors
- *
- IF( LEFTV ) THEN
- DO 20 I = ILO, IHI
- CALL SSCAL( M, LSCALE( I ), V( I, 1 ), LDV )
- 20 CONTINUE
- END IF
- END IF
- *
- * Backward permutation
- *
- 30 CONTINUE
- IF( LSAME( JOB, 'P' ) .OR. LSAME( JOB, 'B' ) ) THEN
- *
- * Backward permutation on right eigenvectors
- *
- IF( RIGHTV ) THEN
- IF( ILO.EQ.1 )
- $ GO TO 50
- *
- DO 40 I = ILO - 1, 1, -1
- K = INT( RSCALE( I ) )
- IF( K.EQ.I )
- $ GO TO 40
- CALL SSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
- 40 CONTINUE
- *
- 50 CONTINUE
- IF( IHI.EQ.N )
- $ GO TO 70
- DO 60 I = IHI + 1, N
- K = INT( RSCALE( I ) )
- IF( K.EQ.I )
- $ GO TO 60
- CALL SSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
- 60 CONTINUE
- END IF
- *
- * Backward permutation on left eigenvectors
- *
- 70 CONTINUE
- IF( LEFTV ) THEN
- IF( ILO.EQ.1 )
- $ GO TO 90
- DO 80 I = ILO - 1, 1, -1
- K = INT( LSCALE( I ) )
- IF( K.EQ.I )
- $ GO TO 80
- CALL SSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
- 80 CONTINUE
- *
- 90 CONTINUE
- IF( IHI.EQ.N )
- $ GO TO 110
- DO 100 I = IHI + 1, N
- K = INT( LSCALE( I ) )
- IF( K.EQ.I )
- $ GO TO 100
- CALL SSWAP( M, V( I, 1 ), LDV, V( K, 1 ), LDV )
- 100 CONTINUE
- END IF
- END IF
- *
- 110 CONTINUE
- *
- RETURN
- *
- * End of SGGBAK
- *
- END
|