|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static real c_b12 = 0.f;
- static integer c__2 = 2;
- static integer c__0 = 0;
-
- /* > \brief <b> SGELST solves overdetermined or underdetermined systems for GE matrices using QR or LQ factori
- zation with compact WY representation of Q.</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SGELST + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelst.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelst.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelst.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SGELST( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, */
- /* INFO ) */
-
- /* CHARACTER TRANS */
- /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS */
- /* REAL A( LDA, * ), B( LDB, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SGELST solves overdetermined or underdetermined real linear systems */
- /* > involving an M-by-N matrix A, or its transpose, using a QR or LQ */
- /* > factorization of A with compact WY representation of Q. */
- /* > It is assumed that A has full rank. */
- /* > */
- /* > The following options are provided: */
- /* > */
- /* > 1. If TRANS = 'N' and m >= n: find the least squares solution of */
- /* > an overdetermined system, i.e., solve the least squares problem */
- /* > minimize || B - A*X ||. */
- /* > */
- /* > 2. If TRANS = 'N' and m < n: find the minimum norm solution of */
- /* > an underdetermined system A * X = B. */
- /* > */
- /* > 3. If TRANS = 'T' and m >= n: find the minimum norm solution of */
- /* > an underdetermined system A**T * X = B. */
- /* > */
- /* > 4. If TRANS = 'T' and m < n: find the least squares solution of */
- /* > an overdetermined system, i.e., solve the least squares problem */
- /* > minimize || B - A**T * X ||. */
- /* > */
- /* > Several right hand side vectors b and solution vectors x can be */
- /* > handled in a single call; they are stored as the columns of the */
- /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
- /* > matrix X. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > = 'N': the linear system involves A; */
- /* > = 'T': the linear system involves A**T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of */
- /* > columns of the matrices B and X. NRHS >=0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, */
- /* > if M >= N, A is overwritten by details of its QR */
- /* > factorization as returned by SGEQRT; */
- /* > if M < N, A is overwritten by details of its LQ */
- /* > factorization as returned by SGELQT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is REAL array, dimension (LDB,NRHS) */
- /* > On entry, the matrix B of right hand side vectors, stored */
- /* > columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
- /* > if TRANS = 'T'. */
- /* > On exit, if INFO = 0, B is overwritten by the solution */
- /* > vectors, stored columnwise: */
- /* > if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
- /* > squares solution vectors; the residual sum of squares for the */
- /* > solution in each column is given by the sum of squares of */
- /* > elements N+1 to M in that column; */
- /* > if TRANS = 'N' and m < n, rows 1 to N of B contain the */
- /* > minimum norm solution vectors; */
- /* > if TRANS = 'T' and m >= n, rows 1 to M of B contain the */
- /* > minimum norm solution vectors; */
- /* > if TRANS = 'T' and m < n, rows 1 to M of B contain the */
- /* > least squares solution vectors; the residual sum of squares */
- /* > for the solution in each column is given by the sum of */
- /* > squares of elements M+1 to N in that column. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= MAX(1,M,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > LWORK >= f2cmax( 1, MN + f2cmax( MN, NRHS ) ). */
- /* > For optimal performance, */
- /* > LWORK >= f2cmax( 1, (MN + f2cmax( MN, NRHS ))*NB ). */
- /* > where MN = f2cmin(M,N) and NB is the optimum block size. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, the i-th diagonal element of the */
- /* > triangular factor of A is zero, so that A does not have */
- /* > full rank; the least squares solution could not be */
- /* > computed. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \ingroup realGEsolve */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > November 2022, Igor Kozachenko, */
- /* > Computer Science Division, */
- /* > University of California, Berkeley */
- /* > \endverbatim */
-
- /* ===================================================================== */
- /* Subroutine */ void sgelst_(char *trans, integer *m, integer *n, integer *
- nrhs, real *a, integer *lda, real *b, integer *ldb, real *work,
- integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
-
- /* Local variables */
- real anrm, bnrm;
- integer brow;
- logical tpsd;
- integer i__, j, iascl, ibscl;
- extern logical lsame_(char *, char *);
- integer nbmin;
- real rwork[1];
- integer lwopt, nb;
- extern /* Subroutine */ void slabad_(real *, real *);
- integer mn;
- extern real slamch_(char *), slange_(char *, integer *, integer *,
- real *, integer *, real *);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- integer scllen;
- real bignum;
- extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
- real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *,
- real *, integer *), sgelqt_(integer *, integer *, integer
- *, real *, integer *, real *, integer *, real *, integer *);
- integer mnnrhs;
- extern /* Subroutine */ void sgeqrt_(integer *, integer *, integer *, real
- *, integer *, real *, integer *, real *, integer *);
- real smlnum;
- logical lquery;
- extern /* Subroutine */ void strtrs_(char *, char *, char *, integer *,
- integer *, real *, integer *, real *, integer *, integer *);
- extern void sgemlqt_(char *, char *, integer *,
- integer *, integer *, integer *, real *, integer *, real *,
- integer *, real *, integer *, real *, integer *),
- sgemqrt_(char *, char *, integer *, integer *, integer *, integer
- *, real *, integer *, real *, integer *, real *, integer *, real *
- , integer *);
-
-
- /* -- LAPACK driver routine -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- --work;
-
- /* Function Body */
- *info = 0;
- mn = f2cmin(*m,*n);
- lquery = *lwork == -1;
- if (! (lsame_(trans, "N") || lsame_(trans, "T"))) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -6;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = f2cmax(1,*m);
- if (*ldb < f2cmax(i__1,*n)) {
- *info = -8;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__2 = mn + f2cmax(mn,*nrhs);
- if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
- *info = -10;
- }
- }
- }
-
- /* Figure out optimal block size and optimal workspace size */
-
- if (*info == 0 || *info == -10) {
-
- tpsd = TRUE_;
- if (lsame_(trans, "N")) {
- tpsd = FALSE_;
- }
-
- nb = ilaenv_(&c__1, "SGELST", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
-
- mnnrhs = f2cmax(mn,*nrhs);
- /* Computing MAX */
- i__1 = 1, i__2 = (mn + mnnrhs) * nb;
- lwopt = f2cmax(i__1,i__2);
- work[1] = (real) lwopt;
-
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("SGELST ", &i__1, 6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- /* Computing MIN */
- i__1 = f2cmin(*m,*n);
- if (f2cmin(i__1,*nrhs) == 0) {
- i__1 = f2cmax(*m,*n);
- slaset_("Full", &i__1, nrhs, &c_b12, &c_b12, &b[b_offset], ldb);
- work[1] = (real) lwopt;
- return;
- }
-
- /* *GEQRT and *GELQT routines cannot accept NB larger than f2cmin(M,N) */
-
- if (nb > mn) {
- nb = mn;
- }
-
- /* Determine the block size from the supplied LWORK */
- /* ( at this stage we know that LWORK >= (minimum required workspace, */
- /* but it may be less than optimal) */
-
- /* Computing MIN */
- i__1 = nb, i__2 = *lwork / (mn + mnnrhs);
- nb = f2cmin(i__1,i__2);
-
- /* The minimum value of NB, when blocked code is used */
-
- /* Computing MAX */
- i__1 = 2, i__2 = ilaenv_(&c__2, "SGELST", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nbmin = f2cmax(i__1,i__2);
-
- if (nb < nbmin) {
- nb = 1;
- }
-
- /* Get machine parameters */
-
- smlnum = slamch_("S") / slamch_("P");
- bignum = 1.f / smlnum;
- slabad_(&smlnum, &bignum);
-
- /* Scale A, B if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = slange_("M", m, n, &a[a_offset], lda, rwork);
- iascl = 0;
- if (anrm > 0.f && anrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM */
-
- slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- iascl = 1;
- } else if (anrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM */
-
- slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- iascl = 2;
- } else if (anrm == 0.f) {
-
- /* Matrix all zero. Return zero solution. */
-
- i__1 = f2cmax(*m,*n);
- slaset_("Full", &i__1, nrhs, &c_b12, &c_b12, &b[b_offset], ldb);
- work[1] = (real) lwopt;
- return;
- }
-
- brow = *m;
- if (tpsd) {
- brow = *n;
- }
- bnrm = slange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);
- ibscl = 0;
- if (bnrm > 0.f && bnrm < smlnum) {
-
- /* Scale matrix norm up to SMLNUM */
-
- slascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset],
- ldb, info);
- ibscl = 1;
- } else if (bnrm > bignum) {
-
- /* Scale matrix norm down to BIGNUM */
-
- slascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset],
- ldb, info);
- ibscl = 2;
- }
-
- if (*m >= *n) {
-
- /* M > N: */
- /* Compute the blocked QR factorization of A, */
- /* using the compact WY representation of Q, */
- /* workspace at least N, optimally N*NB. */
-
- sgeqrt_(m, n, &nb, &a[a_offset], lda, &work[1], &nb, &work[mn * nb +
- 1], info);
-
- if (! tpsd) {
-
- /* M > N, A is not transposed: */
- /* Overdetermined system of equations, */
- /* least-squares problem, f2cmin || A * X - B ||. */
-
- /* Compute B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS), */
- /* using the compact WY representation of Q, */
- /* workspace at least NRHS, optimally NRHS*NB. */
-
- sgemqrt_("Left", "Transpose", m, nrhs, n, &nb, &a[a_offset], lda,
- &work[1], &nb, &b[b_offset], ldb, &work[mn * nb + 1],
- info);
-
- /* Compute B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */
-
- strtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset]
- , lda, &b[b_offset], ldb, info);
-
- if (*info > 0) {
- return;
- }
-
- scllen = *n;
-
- } else {
-
- /* M > N, A is transposed: */
- /* Underdetermined system of equations, */
- /* minimum norm solution of A**T * X = B. */
-
- /* Compute B := inv(R**T) * B in two row blocks of B. */
-
- /* Block 1: B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) */
-
- strtrs_("Upper", "Transpose", "Non-unit", n, nrhs, &a[a_offset],
- lda, &b[b_offset], ldb, info);
-
- if (*info > 0) {
- return;
- }
-
- /* Block 2: Zero out all rows below the N-th row in B: */
- /* B(N+1:M,1:NRHS) = ZERO */
-
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = *n + 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.f;
- }
- }
-
- /* Compute B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS), */
- /* using the compact WY representation of Q, */
- /* workspace at least NRHS, optimally NRHS*NB. */
-
- sgemqrt_("Left", "No transpose", m, nrhs, n, &nb, &a[a_offset],
- lda, &work[1], &nb, &b[b_offset], ldb, &work[mn * nb + 1],
- info);
-
- scllen = *m;
-
- }
-
- } else {
-
- /* M < N: */
- /* Compute the blocked LQ factorization of A, */
- /* using the compact WY representation of Q, */
- /* workspace at least M, optimally M*NB. */
-
- sgelqt_(m, n, &nb, &a[a_offset], lda, &work[1], &nb, &work[mn * nb +
- 1], info);
-
- if (! tpsd) {
-
- /* M < N, A is not transposed: */
- /* Underdetermined system of equations, */
- /* minimum norm solution of A * X = B. */
-
- /* Compute B := inv(L) * B in two row blocks of B. */
-
- /* Block 1: B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */
-
- strtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset]
- , lda, &b[b_offset], ldb, info);
-
- if (*info > 0) {
- return;
- }
-
- /* Block 2: Zero out all rows below the M-th row in B: */
- /* B(M+1:N,1:NRHS) = ZERO */
-
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = *m + 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.f;
- }
- }
-
- /* Compute B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS), */
- /* using the compact WY representation of Q, */
- /* workspace at least NRHS, optimally NRHS*NB. */
-
- sgemlqt_("Left", "Transpose", n, nrhs, m, &nb, &a[a_offset], lda,
- &work[1], &nb, &b[b_offset], ldb, &work[mn * nb + 1],
- info);
-
- scllen = *n;
-
- } else {
-
- /* M < N, A is transposed: */
- /* Overdetermined system of equations, */
- /* least-squares problem, f2cmin || A**T * X - B ||. */
-
- /* Compute B(1:N,1:NRHS) := Q * B(1:N,1:NRHS), */
- /* using the compact WY representation of Q, */
- /* workspace at least NRHS, optimally NRHS*NB. */
-
- sgemlqt_("Left", "No transpose", n, nrhs, m, &nb, &a[a_offset],
- lda, &work[1], &nb, &b[b_offset], ldb, &work[mn * nb + 1],
- info);
-
- /* Compute B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) */
-
- strtrs_("Lower", "Transpose", "Non-unit", m, nrhs, &a[a_offset],
- lda, &b[b_offset], ldb, info);
-
- if (*info > 0) {
- return;
- }
-
- scllen = *m;
-
- }
-
- }
-
- /* Undo scaling */
-
- if (iascl == 1) {
- slascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
- , ldb, info);
- } else if (iascl == 2) {
- slascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
- , ldb, info);
- }
- if (ibscl == 1) {
- slascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
- , ldb, info);
- } else if (ibscl == 2) {
- slascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
- , ldb, info);
- }
-
- work[1] = (real) lwopt;
-
- return;
-
- /* End of SGELST */
-
- } /* sgelst_ */
|