|
- *> \brief \b SGEHRD
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGEHRD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgehrd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgehrd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgehrd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER IHI, ILO, INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGEHRD reduces a real general matrix A to upper Hessenberg form H by
- *> an orthogonal similarity transformation: Q**T * A * Q = H .
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ILO
- *> \verbatim
- *> ILO is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHI
- *> \verbatim
- *> IHI is INTEGER
- *>
- *> It is assumed that A is already upper triangular in rows
- *> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
- *> set by a previous call to SGEBAL; otherwise they should be
- *> set to 1 and N respectively. See Further Details.
- *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the N-by-N general matrix to be reduced.
- *> On exit, the upper triangle and the first subdiagonal of A
- *> are overwritten with the upper Hessenberg matrix H, and the
- *> elements below the first subdiagonal, with the array TAU,
- *> represent the orthogonal matrix Q as a product of elementary
- *> reflectors. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (N-1)
- *> The scalar factors of the elementary reflectors (see Further
- *> Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
- *> zero.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of the array WORK. LWORK >= max(1,N).
- *> For good performance, LWORK should generally be larger.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup gehrd
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The matrix Q is represented as a product of (ihi-ilo) elementary
- *> reflectors
- *>
- *> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
- *>
- *> Each H(i) has the form
- *>
- *> H(i) = I - tau * v * v**T
- *>
- *> where tau is a real scalar, and v is a real vector with
- *> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
- *> exit in A(i+2:ihi,i), and tau in TAU(i).
- *>
- *> The contents of A are illustrated by the following example, with
- *> n = 7, ilo = 2 and ihi = 6:
- *>
- *> on entry, on exit,
- *>
- *> ( a a a a a a a ) ( a a h h h h a )
- *> ( a a a a a a ) ( a h h h h a )
- *> ( a a a a a a ) ( h h h h h h )
- *> ( a a a a a a ) ( v2 h h h h h )
- *> ( a a a a a a ) ( v2 v3 h h h h )
- *> ( a a a a a a ) ( v2 v3 v4 h h h )
- *> ( a ) ( a )
- *>
- *> where a denotes an element of the original matrix A, h denotes a
- *> modified element of the upper Hessenberg matrix H, and vi denotes an
- *> element of the vector defining H(i).
- *>
- *> This file is a slight modification of LAPACK-3.0's SGEHRD
- *> subroutine incorporating improvements proposed by Quintana-Orti and
- *> Van de Geijn (2006). (See SLAHR2.)
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IHI, ILO, INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER NBMAX, LDT, TSIZE
- PARAMETER ( NBMAX = 64, LDT = NBMAX+1,
- $ TSIZE = LDT*NBMAX )
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0,
- $ ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IB, IINFO, IWT, J, LDWORK, LWKOPT, NB,
- $ NBMIN, NH, NX
- REAL EI
- * ..
- * .. External Subroutines ..
- EXTERNAL SAXPY, SGEHD2, SGEMM, SLAHR2, SLARFB, STRMM,
- $ XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- REAL SROUNDUP_LWORK
- EXTERNAL ILAENV, SROUNDUP_LWORK
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
- INFO = -2
- ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
- INFO = -8
- END IF
- *
- NH = IHI - ILO + 1
- IF( INFO.EQ.0 ) THEN
- *
- * Compute the workspace requirements
- *
- IF( NH.LE.1 ) THEN
- LWKOPT = 1
- ELSE
- NB = MIN( NBMAX, ILAENV( 1, 'SGEHRD', ' ', N, ILO, IHI,
- $ -1 ) )
- LWKOPT = N*NB + TSIZE
- ENDIF
- WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGEHRD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
- *
- DO 10 I = 1, ILO - 1
- TAU( I ) = ZERO
- 10 CONTINUE
- DO 20 I = MAX( 1, IHI ), N - 1
- TAU( I ) = ZERO
- 20 CONTINUE
- *
- * Quick return if possible
- *
- IF( NH.LE.1 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- * Determine the block size
- *
- NB = MIN( NBMAX, ILAENV( 1, 'SGEHRD', ' ', N, ILO, IHI, -1 ) )
- NBMIN = 2
- IF( NB.GT.1 .AND. NB.LT.NH ) THEN
- *
- * Determine when to cross over from blocked to unblocked code
- * (last block is always handled by unblocked code)
- *
- NX = MAX( NB, ILAENV( 3, 'SGEHRD', ' ', N, ILO, IHI, -1 ) )
- IF( NX.LT.NH ) THEN
- *
- * Determine if workspace is large enough for blocked code
- *
- IF( LWORK.LT.LWKOPT ) THEN
- *
- * Not enough workspace to use optimal NB: determine the
- * minimum value of NB, and reduce NB or force use of
- * unblocked code
- *
- NBMIN = MAX( 2, ILAENV( 2, 'SGEHRD', ' ', N, ILO, IHI,
- $ -1 ) )
- IF( LWORK.GE.(N*NBMIN + TSIZE) ) THEN
- NB = (LWORK-TSIZE) / N
- ELSE
- NB = 1
- END IF
- END IF
- END IF
- END IF
- LDWORK = N
- *
- IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
- *
- * Use unblocked code below
- *
- I = ILO
- *
- ELSE
- *
- * Use blocked code
- *
- IWT = 1 + N*NB
- DO 40 I = ILO, IHI - 1 - NX, NB
- IB = MIN( NB, IHI-I )
- *
- * Reduce columns i:i+ib-1 to Hessenberg form, returning the
- * matrices V and T of the block reflector H = I - V*T*V**T
- * which performs the reduction, and also the matrix Y = A*V*T
- *
- CALL SLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ),
- $ WORK( IWT ), LDT, WORK, LDWORK )
- *
- * Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
- * right, computing A := A - Y * V**T. V(i+ib,ib-1) must be set
- * to 1
- *
- EI = A( I+IB, I+IB-1 )
- A( I+IB, I+IB-1 ) = ONE
- CALL SGEMM( 'No transpose', 'Transpose',
- $ IHI, IHI-I-IB+1,
- $ IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
- $ A( 1, I+IB ), LDA )
- A( I+IB, I+IB-1 ) = EI
- *
- * Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
- * right
- *
- CALL STRMM( 'Right', 'Lower', 'Transpose',
- $ 'Unit', I, IB-1,
- $ ONE, A( I+1, I ), LDA, WORK, LDWORK )
- DO 30 J = 0, IB-2
- CALL SAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
- $ A( 1, I+J+1 ), 1 )
- 30 CONTINUE
- *
- * Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
- * left
- *
- CALL SLARFB( 'Left', 'Transpose', 'Forward',
- $ 'Columnwise',
- $ IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA,
- $ WORK( IWT ), LDT, A( I+1, I+IB ), LDA,
- $ WORK, LDWORK )
- 40 CONTINUE
- END IF
- *
- * Use unblocked code to reduce the rest of the matrix
- *
- CALL SGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
- *
- WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
- *
- RETURN
- *
- * End of SGEHRD
- *
- END
|