|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__2 = 2;
- static real c_b21 = -1.f;
- static real c_b22 = 1.f;
-
- /* > \brief \b SGEBRD */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download SGEBRD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgebrd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgebrd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgebrd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, */
- /* INFO ) */
-
- /* INTEGER INFO, LDA, LWORK, M, N */
- /* REAL A( LDA, * ), D( * ), E( * ), TAUP( * ), */
- /* $ TAUQ( * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > SGEBRD reduces a general real M-by-N matrix A to upper or lower */
- /* > bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */
- /* > */
- /* > If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows in the matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns in the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is REAL array, dimension (LDA,N) */
- /* > On entry, the M-by-N general matrix to be reduced. */
- /* > On exit, */
- /* > if m >= n, the diagonal and the first superdiagonal are */
- /* > overwritten with the upper bidiagonal matrix B; the */
- /* > elements below the diagonal, with the array TAUQ, represent */
- /* > the orthogonal matrix Q as a product of elementary */
- /* > reflectors, and the elements above the first superdiagonal, */
- /* > with the array TAUP, represent the orthogonal matrix P as */
- /* > a product of elementary reflectors; */
- /* > if m < n, the diagonal and the first subdiagonal are */
- /* > overwritten with the lower bidiagonal matrix B; the */
- /* > elements below the first subdiagonal, with the array TAUQ, */
- /* > represent the orthogonal matrix Q as a product of */
- /* > elementary reflectors, and the elements above the diagonal, */
- /* > with the array TAUP, represent the orthogonal matrix P as */
- /* > a product of elementary reflectors. */
- /* > See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is REAL array, dimension (f2cmin(M,N)) */
- /* > The diagonal elements of the bidiagonal matrix B: */
- /* > D(i) = A(i,i). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is REAL array, dimension (f2cmin(M,N)-1) */
- /* > The off-diagonal elements of the bidiagonal matrix B: */
- /* > if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
- /* > if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUQ */
- /* > \verbatim */
- /* > TAUQ is REAL array, dimension (f2cmin(M,N)) */
- /* > The scalar factors of the elementary reflectors which */
- /* > represent the orthogonal matrix Q. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUP */
- /* > \verbatim */
- /* > TAUP is REAL array, dimension (f2cmin(M,N)) */
- /* > The scalar factors of the elementary reflectors which */
- /* > represent the orthogonal matrix P. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The length of the array WORK. LWORK >= f2cmax(1,M,N). */
- /* > For optimum performance LWORK >= (M+N)*NB, where NB */
- /* > is the optimal blocksize. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* > \ingroup realGEcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The matrices Q and P are represented as products of elementary */
- /* > reflectors: */
- /* > */
- /* > If m >= n, */
- /* > */
- /* > Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */
- /* > */
- /* > Each H(i) and G(i) has the form: */
- /* > */
- /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */
- /* > */
- /* > where tauq and taup are real scalars, and v and u are real vectors; */
- /* > v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */
- /* > u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */
- /* > tauq is stored in TAUQ(i) and taup in TAUP(i). */
- /* > */
- /* > If m < n, */
- /* > */
- /* > Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */
- /* > */
- /* > Each H(i) and G(i) has the form: */
- /* > */
- /* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */
- /* > */
- /* > where tauq and taup are real scalars, and v and u are real vectors; */
- /* > v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
- /* > u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
- /* > tauq is stored in TAUQ(i) and taup in TAUP(i). */
- /* > */
- /* > The contents of A on exit are illustrated by the following examples: */
- /* > */
- /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
- /* > */
- /* > ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */
- /* > ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */
- /* > ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */
- /* > ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */
- /* > ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */
- /* > ( v1 v2 v3 v4 v5 ) */
- /* > */
- /* > where d and e denote diagonal and off-diagonal elements of B, vi */
- /* > denotes an element of the vector defining H(i), and ui an element of */
- /* > the vector defining G(i). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void sgebrd_(integer *m, integer *n, real *a, integer *lda,
- real *d__, real *e, real *tauq, real *taup, real *work, integer *
- lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
-
- /* Local variables */
- integer i__, j, nbmin, iinfo;
- extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
- integer *, real *, real *, integer *, real *, integer *, real *,
- real *, integer *);
- integer minmn;
- extern /* Subroutine */ void sgebd2_(integer *, integer *, real *, integer
- *, real *, real *, real *, real *, real *, integer *);
- integer nb, nx;
- extern /* Subroutine */ void slabrd_(integer *, integer *, integer *, real
- *, integer *, real *, real *, real *, real *, real *, integer *,
- real *, integer *);
- integer ws;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- integer ldwrkx, ldwrky, lwkopt;
- logical lquery;
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- --work;
-
- /* Function Body */
- *info = 0;
- /* Computing MAX */
- i__1 = 1, i__2 = ilaenv_(&c__1, "SGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nb = f2cmax(i__1,i__2);
- lwkopt = (*m + *n) * nb;
- work[1] = (real) lwkopt;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -4;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = f2cmax(1,*m);
- if (*lwork < f2cmax(i__1,*n) && ! lquery) {
- *info = -10;
- }
- }
- if (*info < 0) {
- i__1 = -(*info);
- xerbla_("SGEBRD", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- minmn = f2cmin(*m,*n);
- if (minmn == 0) {
- work[1] = 1.f;
- return;
- }
-
- ws = f2cmax(*m,*n);
- ldwrkx = *m;
- ldwrky = *n;
-
- if (nb > 1 && nb < minmn) {
-
- /* Set the crossover point NX. */
-
- /* Computing MAX */
- i__1 = nb, i__2 = ilaenv_(&c__3, "SGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- nx = f2cmax(i__1,i__2);
-
- /* Determine when to switch from blocked to unblocked code. */
-
- if (nx < minmn) {
- ws = (*m + *n) * nb;
- if (*lwork < ws) {
-
- /* Not enough work space for the optimal NB, consider using */
- /* a smaller block size. */
-
- nbmin = ilaenv_(&c__2, "SGEBRD", " ", m, n, &c_n1, &c_n1, (
- ftnlen)6, (ftnlen)1);
- if (*lwork >= (*m + *n) * nbmin) {
- nb = *lwork / (*m + *n);
- } else {
- nb = 1;
- nx = minmn;
- }
- }
- }
- } else {
- nx = minmn;
- }
-
- i__1 = minmn - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
-
- /* Reduce rows and columns i:i+nb-1 to bidiagonal form and return */
- /* the matrices X and Y which are needed to update the unreduced */
- /* part of the matrix */
-
- i__3 = *m - i__ + 1;
- i__4 = *n - i__ + 1;
- slabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
- i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx
- * nb + 1], &ldwrky);
-
- /* Update the trailing submatrix A(i+nb:m,i+nb:n), using an update */
- /* of the form A := A - V*Y**T - X*U**T */
-
- i__3 = *m - i__ - nb + 1;
- i__4 = *n - i__ - nb + 1;
- sgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__
- + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &
- ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
- i__3 = *m - i__ - nb + 1;
- i__4 = *n - i__ - nb + 1;
- sgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, &
- work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
- c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
-
- /* Copy diagonal and off-diagonal elements of B back into A */
-
- if (*m >= *n) {
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j + j * a_dim1] = d__[j];
- a[j + (j + 1) * a_dim1] = e[j];
- /* L10: */
- }
- } else {
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j + j * a_dim1] = d__[j];
- a[j + 1 + j * a_dim1] = e[j];
- /* L20: */
- }
- }
- /* L30: */
- }
-
- /* Use unblocked code to reduce the remainder of the matrix */
-
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- sgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
- tauq[i__], &taup[i__], &work[1], &iinfo);
- work[1] = (real) ws;
- return;
-
- /* End of SGEBRD */
-
- } /* sgebrd_ */
|