|
- !> \brief \b LA_CONSTANTS is a module for the scaling constants for the compiled Fortran single and double precisions
- !
- ! =========== DOCUMENTATION ===========
- !
- ! Online html documentation available at
- ! http://www.netlib.org/lapack/explore-html/
- !
- ! Authors:
- ! ========
- !
- !> \author Edward Anderson, Lockheed Martin
- !
- !> \date May 2016
- !
- !> \ingroup OTHERauxiliary
- !
- !> \par Contributors:
- ! ==================
- !>
- !> Weslley Pereira, University of Colorado Denver, USA
- !> Nick Papior, Technical University of Denmark, DK
- !
- !> \par Further Details:
- ! =====================
- !>
- !> \verbatim
- !>
- !> Anderson E. (2017)
- !> Algorithm 978: Safe Scaling in the Level 1 BLAS
- !> ACM Trans Math Softw 44:1--28
- !> https://doi.org/10.1145/3061665
- !>
- !> Blue, James L. (1978)
- !> A Portable Fortran Program to Find the Euclidean Norm of a Vector
- !> ACM Trans Math Softw 4:15--23
- !> https://doi.org/10.1145/355769.355771
- !>
- !> \endverbatim
- !
- module LA_CONSTANTS
- ! -- LAPACK auxiliary module --
- ! -- LAPACK is a software package provided by Univ. of Tennessee, --
- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-
- ! Standard constants for
- integer, parameter :: sp = kind(1.e0)
-
- real(sp), parameter :: szero = 0.0_sp
- real(sp), parameter :: shalf = 0.5_sp
- real(sp), parameter :: sone = 1.0_sp
- real(sp), parameter :: stwo = 2.0_sp
- real(sp), parameter :: sthree = 3.0_sp
- real(sp), parameter :: sfour = 4.0_sp
- real(sp), parameter :: seight = 8.0_sp
- real(sp), parameter :: sten = 10.0_sp
- complex(sp), parameter :: czero = ( 0.0_sp, 0.0_sp )
- complex(sp), parameter :: chalf = ( 0.5_sp, 0.0_sp )
- complex(sp), parameter :: cone = ( 1.0_sp, 0.0_sp )
- character*1, parameter :: sprefix = 'S'
- character*1, parameter :: cprefix = 'C'
-
- ! Scaling constants
- real(sp), parameter :: sulp = epsilon(0._sp)
- real(sp), parameter :: seps = sulp * 0.5_sp
- real(sp), parameter :: ssafmin = real(radix(0._sp),sp)**max( &
- minexponent(0._sp)-1, &
- 1-maxexponent(0._sp) &
- )
- real(sp), parameter :: ssafmax = sone / ssafmin
- real(sp), parameter :: ssmlnum = ssafmin / sulp
- real(sp), parameter :: sbignum = ssafmax * sulp
- real(sp), parameter :: srtmin = sqrt(ssmlnum)
- real(sp), parameter :: srtmax = sqrt(sbignum)
-
- ! Blue's scaling constants
- real(sp), parameter :: stsml = real(radix(0._sp), sp)**ceiling( &
- (minexponent(0._sp) - 1) * 0.5_sp)
- real(sp), parameter :: stbig = real(radix(0._sp), sp)**floor( &
- (maxexponent(0._sp) - digits(0._sp) + 1) * 0.5_sp)
- ! ssml >= 1/s, where s was defined in https://doi.org/10.1145/355769.355771
- ! The correction was added in https://doi.org/10.1145/3061665 to scale denormalized numbers correctly
- real(sp), parameter :: sssml = real(radix(0._sp), sp)**( - floor( &
- (minexponent(0._sp) - digits(0._sp)) * 0.5_sp))
- ! sbig = 1/S, where S was defined in https://doi.org/10.1145/355769.355771
- real(sp), parameter :: ssbig = real(radix(0._sp), sp)**( - ceiling( &
- (maxexponent(0._sp) + digits(0._sp) - 1) * 0.5_sp))
-
- ! Standard constants for
- integer, parameter :: dp = kind(1.d0)
-
- real(dp), parameter :: dzero = 0.0_dp
- real(dp), parameter :: dhalf = 0.5_dp
- real(dp), parameter :: done = 1.0_dp
- real(dp), parameter :: dtwo = 2.0_dp
- real(dp), parameter :: dthree = 3.0_dp
- real(dp), parameter :: dfour = 4.0_dp
- real(dp), parameter :: deight = 8.0_dp
- real(dp), parameter :: dten = 10.0_dp
- complex(dp), parameter :: zzero = ( 0.0_dp, 0.0_dp )
- complex(dp), parameter :: zhalf = ( 0.5_dp, 0.0_dp )
- complex(dp), parameter :: zone = ( 1.0_dp, 0.0_dp )
- character*1, parameter :: dprefix = 'D'
- character*1, parameter :: zprefix = 'Z'
-
- ! Scaling constants
- real(dp), parameter :: dulp = epsilon(0._dp)
- real(dp), parameter :: deps = dulp * 0.5_dp
- real(dp), parameter :: dsafmin = real(radix(0._dp),dp)**max( &
- minexponent(0._dp)-1, &
- 1-maxexponent(0._dp) &
- )
- real(dp), parameter :: dsafmax = done / dsafmin
- real(dp), parameter :: dsmlnum = dsafmin / dulp
- real(dp), parameter :: dbignum = dsafmax * dulp
- real(dp), parameter :: drtmin = sqrt(dsmlnum)
- real(dp), parameter :: drtmax = sqrt(dbignum)
-
- ! Blue's scaling constants
- real(dp), parameter :: dtsml = real(radix(0._dp), dp)**ceiling( &
- (minexponent(0._dp) - 1) * 0.5_dp)
- real(dp), parameter :: dtbig = real(radix(0._dp), dp)**floor( &
- (maxexponent(0._dp) - digits(0._dp) + 1) * 0.5_dp)
- ! ssml >= 1/s, where s was defined in https://doi.org/10.1145/355769.355771
- ! The correction was added in https://doi.org/10.1145/3061665 to scale denormalized numbers correctly
- real(dp), parameter :: dssml = real(radix(0._dp), dp)**( - floor( &
- (minexponent(0._dp) - digits(0._dp)) * 0.5_dp))
- ! sbig = 1/S, where S was defined in https://doi.org/10.1145/355769.355771
- real(dp), parameter :: dsbig = real(radix(0._dp), dp)**( - ceiling( &
- (maxexponent(0._dp) + digits(0._dp) - 1) * 0.5_dp))
-
- end module LA_CONSTANTS
|