|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
-
- /* > \brief \b IPARMQ */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download IPARMQ + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iparmq.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iparmq.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iparmq.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* INTEGER FUNCTION IPARMQ( ISPEC, NAME, OPTS, N, ILO, IHI, LWORK ) */
-
- /* INTEGER IHI, ILO, ISPEC, LWORK, N */
- /* CHARACTER NAME*( * ), OPTS*( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > This program sets problem and machine dependent parameters */
- /* > useful for xHSEQR and related subroutines for eigenvalue */
- /* > problems. It is called whenever */
- /* > IPARMQ is called with 12 <= ISPEC <= 16 */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] ISPEC */
- /* > \verbatim */
- /* > ISPEC is INTEGER */
- /* > ISPEC specifies which tunable parameter IPARMQ should */
- /* > return. */
- /* > */
- /* > ISPEC=12: (INMIN) Matrices of order nmin or less */
- /* > are sent directly to xLAHQR, the implicit */
- /* > double shift QR algorithm. NMIN must be */
- /* > at least 11. */
- /* > */
- /* > ISPEC=13: (INWIN) Size of the deflation window. */
- /* > This is best set greater than or equal to */
- /* > the number of simultaneous shifts NS. */
- /* > Larger matrices benefit from larger deflation */
- /* > windows. */
- /* > */
- /* > ISPEC=14: (INIBL) Determines when to stop nibbling and */
- /* > invest in an (expensive) multi-shift QR sweep. */
- /* > If the aggressive early deflation subroutine */
- /* > finds LD converged eigenvalues from an order */
- /* > NW deflation window and LD > (NW*NIBBLE)/100, */
- /* > then the next QR sweep is skipped and early */
- /* > deflation is applied immediately to the */
- /* > remaining active diagonal block. Setting */
- /* > IPARMQ(ISPEC=14) = 0 causes TTQRE to skip a */
- /* > multi-shift QR sweep whenever early deflation */
- /* > finds a converged eigenvalue. Setting */
- /* > IPARMQ(ISPEC=14) greater than or equal to 100 */
- /* > prevents TTQRE from skipping a multi-shift */
- /* > QR sweep. */
- /* > */
- /* > ISPEC=15: (NSHFTS) The number of simultaneous shifts in */
- /* > a multi-shift QR iteration. */
- /* > */
- /* > ISPEC=16: (IACC22) IPARMQ is set to 0, 1 or 2 with the */
- /* > following meanings. */
- /* > 0: During the multi-shift QR/QZ sweep, */
- /* > blocked eigenvalue reordering, blocked */
- /* > Hessenberg-triangular reduction, */
- /* > reflections and/or rotations are not */
- /* > accumulated when updating the */
- /* > far-from-diagonal matrix entries. */
- /* > 1: During the multi-shift QR/QZ sweep, */
- /* > blocked eigenvalue reordering, blocked */
- /* > Hessenberg-triangular reduction, */
- /* > reflections and/or rotations are */
- /* > accumulated, and matrix-matrix */
- /* > multiplication is used to update the */
- /* > far-from-diagonal matrix entries. */
- /* > 2: During the multi-shift QR/QZ sweep, */
- /* > blocked eigenvalue reordering, blocked */
- /* > Hessenberg-triangular reduction, */
- /* > reflections and/or rotations are */
- /* > accumulated, and 2-by-2 block structure */
- /* > is exploited during matrix-matrix */
- /* > multiplies. */
- /* > (If xTRMM is slower than xGEMM, then */
- /* > IPARMQ(ISPEC=16)=1 may be more efficient than */
- /* > IPARMQ(ISPEC=16)=2 despite the greater level of */
- /* > arithmetic work implied by the latter choice.) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NAME */
- /* > \verbatim */
- /* > NAME is CHARACTER string */
- /* > Name of the calling subroutine */
- /* > \endverbatim */
- /* > */
- /* > \param[in] OPTS */
- /* > \verbatim */
- /* > OPTS is CHARACTER string */
- /* > This is a concatenation of the string arguments to */
- /* > TTQRE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > N is the order of the Hessenberg matrix H. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > It is assumed that H is already upper triangular */
- /* > in rows and columns 1:ILO-1 and IHI+1:N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The amount of workspace available. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup OTHERauxiliary */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Little is known about how best to choose these parameters. */
- /* > It is possible to use different values of the parameters */
- /* > for each of CHSEQR, DHSEQR, SHSEQR and ZHSEQR. */
- /* > */
- /* > It is probably best to choose different parameters for */
- /* > different matrices and different parameters at different */
- /* > times during the iteration, but this has not been */
- /* > implemented --- yet. */
- /* > */
- /* > */
- /* > The best choices of most of the parameters depend */
- /* > in an ill-understood way on the relative execution */
- /* > rate of xLAQR3 and xLAQR5 and on the nature of each */
- /* > particular eigenvalue problem. Experiment may be the */
- /* > only practical way to determine which choices are most */
- /* > effective. */
- /* > */
- /* > Following is a list of default values supplied by IPARMQ. */
- /* > These defaults may be adjusted in order to attain better */
- /* > performance in any particular computational environment. */
- /* > */
- /* > IPARMQ(ISPEC=12) The xLAHQR vs xLAQR0 crossover point. */
- /* > Default: 75. (Must be at least 11.) */
- /* > */
- /* > IPARMQ(ISPEC=13) Recommended deflation window size. */
- /* > This depends on ILO, IHI and NS, the */
- /* > number of simultaneous shifts returned */
- /* > by IPARMQ(ISPEC=15). The default for */
- /* > (IHI-ILO+1) <= 500 is NS. The default */
- /* > for (IHI-ILO+1) > 500 is 3*NS/2. */
- /* > */
- /* > IPARMQ(ISPEC=14) Nibble crossover point. Default: 14. */
- /* > */
- /* > IPARMQ(ISPEC=15) Number of simultaneous shifts, NS. */
- /* > a multi-shift QR iteration. */
- /* > */
- /* > If IHI-ILO+1 is ... */
- /* > */
- /* > greater than ...but less ... the */
- /* > or equal to ... than default is */
- /* > */
- /* > 0 30 NS = 2+ */
- /* > 30 60 NS = 4+ */
- /* > 60 150 NS = 10 */
- /* > 150 590 NS = ** */
- /* > 590 3000 NS = 64 */
- /* > 3000 6000 NS = 128 */
- /* > 6000 infinity NS = 256 */
- /* > */
- /* > (+) By default matrices of this order are */
- /* > passed to the implicit double shift routine */
- /* > xLAHQR. See IPARMQ(ISPEC=12) above. These */
- /* > values of NS are used only in case of a rare */
- /* > xLAHQR failure. */
- /* > */
- /* > (**) The asterisks (**) indicate an ad-hoc */
- /* > function increasing from 10 to 64. */
- /* > */
- /* > IPARMQ(ISPEC=16) Select structured matrix multiply. */
- /* > (See ISPEC=16 above for details.) */
- /* > Default: 3. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- integer iparmq_(integer *ispec, char *name__, char *opts, integer *n, integer
- *ilo, integer *ihi, integer *lwork)
- {
- /* System generated locals */
- integer ret_val, i__1, i__2;
- real r__1;
-
- /* Local variables */
- integer i__, ic, nh, ns, iz;
- char subnam[6];
- integer name_len;
-
- /* -- LAPACK auxiliary routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ================================================================ */
- if (*ispec == 15 || *ispec == 13 || *ispec == 16) {
-
- /* ==== Set the number simultaneous shifts ==== */
-
- nh = *ihi - *ilo + 1;
- ns = 2;
- if (nh >= 30) {
- ns = 4;
- }
- if (nh >= 60) {
- ns = 10;
- }
- if (nh >= 150) {
- /* Computing MAX */
- r__1 = log((real) nh) / log(2.f);
- i__1 = 10, i__2 = nh / i_nint(&r__1);
- ns = f2cmax(i__1,i__2);
- }
- if (nh >= 590) {
- ns = 64;
- }
- if (nh >= 3000) {
- ns = 128;
- }
- if (nh >= 6000) {
- ns = 256;
- }
- /* Computing MAX */
- i__1 = 2, i__2 = ns - ns % 2;
- ns = f2cmax(i__1,i__2);
- }
-
- if (*ispec == 12) {
-
-
- /* ===== Matrices of order smaller than NMIN get sent */
- /* . to xLAHQR, the classic double shift algorithm. */
- /* . This must be at least 11. ==== */
-
- ret_val = 75;
-
- } else if (*ispec == 14) {
-
- /* ==== INIBL: skip a multi-shift qr iteration and */
- /* . whenever aggressive early deflation finds */
- /* . at least (NIBBLE*(window size)/100) deflations. ==== */
-
- ret_val = 14;
-
- } else if (*ispec == 15) {
-
- /* ==== NSHFTS: The number of simultaneous shifts ===== */
-
- ret_val = ns;
-
- } else if (*ispec == 13) {
-
- /* ==== NW: deflation window size. ==== */
-
- if (nh <= 500) {
- ret_val = ns;
- } else {
- ret_val = ns * 3 / 2;
- }
-
- } else if (*ispec == 16) {
-
- /* ==== IACC22: Whether to accumulate reflections */
- /* . before updating the far-from-diagonal elements */
- /* . and whether to use 2-by-2 block structure while */
- /* . doing it. A small amount of work could be saved */
- /* . by making this choice dependent also upon the */
- /* . NH=IHI-ILO+1. */
-
-
- /* Convert NAME to upper case if the first character is lower case. */
-
- ret_val = 0;
- s_copy(subnam, name__, (ftnlen)6, name_len);
- ic = *(unsigned char *)subnam;
- iz = 'Z';
- if (iz == 90 || iz == 122) {
-
- /* ASCII character set */
-
- if (ic >= 97 && ic <= 122) {
- *(unsigned char *)subnam = (char) (ic - 32);
- for (i__ = 2; i__ <= 6; ++i__) {
- ic = *(unsigned char *)&subnam[i__ - 1];
- if (ic >= 97 && ic <= 122) {
- *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
- }
- }
- }
-
- } else if (iz == 233 || iz == 169) {
-
- /* EBCDIC character set */
-
- if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 || ic >= 162
- && ic <= 169) {
- *(unsigned char *)subnam = (char) (ic + 64);
- for (i__ = 2; i__ <= 6; ++i__) {
- ic = *(unsigned char *)&subnam[i__ - 1];
- if (ic >= 129 && ic <= 137 || ic >= 145 && ic <= 153 ||
- ic >= 162 && ic <= 169) {
- *(unsigned char *)&subnam[i__ - 1] = (char) (ic + 64);
- }
- }
- }
-
- } else if (iz == 218 || iz == 250) {
-
- /* Prime machines: ASCII+128 */
-
- if (ic >= 225 && ic <= 250) {
- *(unsigned char *)subnam = (char) (ic - 32);
- for (i__ = 2; i__ <= 6; ++i__) {
- ic = *(unsigned char *)&subnam[i__ - 1];
- if (ic >= 225 && ic <= 250) {
- *(unsigned char *)&subnam[i__ - 1] = (char) (ic - 32);
- }
- }
- }
- }
-
- if (s_cmp(subnam + 1, "GGHRD", (ftnlen)5, (ftnlen)5) == 0 || s_cmp(
- subnam + 1, "GGHD3", (ftnlen)5, (ftnlen)5) == 0) {
- ret_val = 1;
- if (nh >= 14) {
- ret_val = 2;
- }
- } else if (s_cmp(subnam + 3, "EXC", (ftnlen)3, (ftnlen)3) == 0) {
- if (nh >= 14) {
- ret_val = 1;
- }
- if (nh >= 14) {
- ret_val = 2;
- }
- } else if (s_cmp(subnam + 1, "HSEQR", (ftnlen)5, (ftnlen)5) == 0 ||
- s_cmp(subnam + 1, "LAQR", (ftnlen)4, (ftnlen)4) == 0) {
- if (ns >= 14) {
- ret_val = 1;
- }
- if (ns >= 14) {
- ret_val = 2;
- }
- }
-
- } else {
- /* ===== invalid value of ispec ===== */
- ret_val = -1;
-
- }
-
- /* ==== End of IPARMQ ==== */
-
- return ret_val;
- } /* iparmq_ */
|