|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static logical c_true = TRUE_;
- static logical c_false = FALSE_;
-
- /* > \brief \b DTRSNA */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DTRSNA + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsna.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsna.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsna.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
- /* LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK, */
- /* INFO ) */
-
- /* CHARACTER HOWMNY, JOB */
- /* INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N */
- /* LOGICAL SELECT( * ) */
- /* INTEGER IWORK( * ) */
- /* DOUBLE PRECISION S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ), */
- /* $ VR( LDVR, * ), WORK( LDWORK, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DTRSNA estimates reciprocal condition numbers for specified */
- /* > eigenvalues and/or right eigenvectors of a real upper */
- /* > quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q */
- /* > orthogonal). */
- /* > */
- /* > T must be in Schur canonical form (as returned by DHSEQR), that is, */
- /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
- /* > 2-by-2 diagonal block has its diagonal elements equal and its */
- /* > off-diagonal elements of opposite sign. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOB */
- /* > \verbatim */
- /* > JOB is CHARACTER*1 */
- /* > Specifies whether condition numbers are required for */
- /* > eigenvalues (S) or eigenvectors (SEP): */
- /* > = 'E': for eigenvalues only (S); */
- /* > = 'V': for eigenvectors only (SEP); */
- /* > = 'B': for both eigenvalues and eigenvectors (S and SEP). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] HOWMNY */
- /* > \verbatim */
- /* > HOWMNY is CHARACTER*1 */
- /* > = 'A': compute condition numbers for all eigenpairs; */
- /* > = 'S': compute condition numbers for selected eigenpairs */
- /* > specified by the array SELECT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
- /* > condition numbers are required. To select condition numbers */
- /* > for the eigenpair corresponding to a real eigenvalue w(j), */
- /* > SELECT(j) must be set to .TRUE.. To select condition numbers */
- /* > corresponding to a complex conjugate pair of eigenvalues w(j) */
- /* > and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
- /* > set to .TRUE.. */
- /* > If HOWMNY = 'A', SELECT is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix T. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] T */
- /* > \verbatim */
- /* > T is DOUBLE PRECISION array, dimension (LDT,N) */
- /* > The upper quasi-triangular matrix T, in Schur canonical form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is DOUBLE PRECISION array, dimension (LDVL,M) */
- /* > If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
- /* > (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
- /* > eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
- /* > must be stored in consecutive columns of VL, as returned by */
- /* > DHSEIN or DTREVC. */
- /* > If JOB = 'V', VL is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the array VL. */
- /* > LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VR */
- /* > \verbatim */
- /* > VR is DOUBLE PRECISION array, dimension (LDVR,M) */
- /* > If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
- /* > (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
- /* > eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
- /* > must be stored in consecutive columns of VR, as returned by */
- /* > DHSEIN or DTREVC. */
- /* > If JOB = 'V', VR is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the array VR. */
- /* > LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is DOUBLE PRECISION array, dimension (MM) */
- /* > If JOB = 'E' or 'B', the reciprocal condition numbers of the */
- /* > selected eigenvalues, stored in consecutive elements of the */
- /* > array. For a complex conjugate pair of eigenvalues two */
- /* > consecutive elements of S are set to the same value. Thus */
- /* > S(j), SEP(j), and the j-th columns of VL and VR all */
- /* > correspond to the same eigenpair (but not in general the */
- /* > j-th eigenpair, unless all eigenpairs are selected). */
- /* > If JOB = 'V', S is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SEP */
- /* > \verbatim */
- /* > SEP is DOUBLE PRECISION array, dimension (MM) */
- /* > If JOB = 'V' or 'B', the estimated reciprocal condition */
- /* > numbers of the selected eigenvectors, stored in consecutive */
- /* > elements of the array. For a complex eigenvector two */
- /* > consecutive elements of SEP are set to the same value. If */
- /* > the eigenvalues cannot be reordered to compute SEP(j), SEP(j) */
- /* > is set to 0; this can only occur when the true value would be */
- /* > very small anyway. */
- /* > If JOB = 'E', SEP is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MM */
- /* > \verbatim */
- /* > MM is INTEGER */
- /* > The number of elements in the arrays S (if JOB = 'E' or 'B') */
- /* > and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of elements of the arrays S and/or SEP actually */
- /* > used to store the estimated condition numbers. */
- /* > If HOWMNY = 'A', M is set to N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (LDWORK,N+6) */
- /* > If JOB = 'E', WORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDWORK */
- /* > \verbatim */
- /* > LDWORK is INTEGER */
- /* > The leading dimension of the array WORK. */
- /* > LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (2*(N-1)) */
- /* > If JOB = 'E', IWORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* > \ingroup doubleOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The reciprocal of the condition number of an eigenvalue lambda is */
- /* > defined as */
- /* > */
- /* > S(lambda) = |v**T*u| / (norm(u)*norm(v)) */
- /* > */
- /* > where u and v are the right and left eigenvectors of T corresponding */
- /* > to lambda; v**T denotes the transpose of v, and norm(u) */
- /* > denotes the Euclidean norm. These reciprocal condition numbers always */
- /* > lie between zero (very badly conditioned) and one (very well */
- /* > conditioned). If n = 1, S(lambda) is defined to be 1. */
- /* > */
- /* > An approximate error bound for a computed eigenvalue W(i) is given by */
- /* > */
- /* > EPS * norm(T) / S(i) */
- /* > */
- /* > where EPS is the machine precision. */
- /* > */
- /* > The reciprocal of the condition number of the right eigenvector u */
- /* > corresponding to lambda is defined as follows. Suppose */
- /* > */
- /* > T = ( lambda c ) */
- /* > ( 0 T22 ) */
- /* > */
- /* > Then the reciprocal condition number is */
- /* > */
- /* > SEP( lambda, T22 ) = sigma-f2cmin( T22 - lambda*I ) */
- /* > */
- /* > where sigma-f2cmin denotes the smallest singular value. We approximate */
- /* > the smallest singular value by the reciprocal of an estimate of the */
- /* > one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
- /* > defined to be abs(T(1,1)). */
- /* > */
- /* > An approximate error bound for a computed right eigenvector VR(i) */
- /* > is given by */
- /* > */
- /* > EPS * norm(T) / SEP(i) */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dtrsna_(char *job, char *howmny, logical *select,
- integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
- ldvl, doublereal *vr, integer *ldvr, doublereal *s, doublereal *sep,
- integer *mm, integer *m, doublereal *work, integer *ldwork, integer *
- iwork, integer *info)
- {
- /* System generated locals */
- integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset,
- work_dim1, work_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Local variables */
- integer kase;
- doublereal cond;
- extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- logical pair;
- integer ierr;
- doublereal dumm, prod;
- integer ifst;
- doublereal lnrm;
- integer ilst;
- doublereal rnrm;
- extern doublereal dnrm2_(integer *, doublereal *, integer *);
- doublereal prod1, prod2;
- integer i__, j, k;
- doublereal scale, delta;
- extern logical lsame_(char *, char *);
- integer isave[3];
- logical wants;
- doublereal dummy[1];
- integer n2;
- extern /* Subroutine */ void dlacn2_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- extern doublereal dlapy2_(doublereal *, doublereal *);
- extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
- doublereal cs;
- extern doublereal dlamch_(char *);
- integer nn, ks;
- doublereal sn, mu;
- extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- doublereal bignum;
- logical wantbh;
- extern /* Subroutine */ void dlaqtr_(logical *, logical *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *), dtrexc_(char *, integer *
- , doublereal *, integer *, doublereal *, integer *, integer *,
- integer *, doublereal *, integer *);
- logical somcon;
- doublereal smlnum;
- logical wantsp;
- doublereal eps, est;
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters */
-
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --s;
- --sep;
- work_dim1 = *ldwork;
- work_offset = 1 + work_dim1 * 1;
- work -= work_offset;
- --iwork;
-
- /* Function Body */
- wantbh = lsame_(job, "B");
- wants = lsame_(job, "E") || wantbh;
- wantsp = lsame_(job, "V") || wantbh;
-
- somcon = lsame_(howmny, "S");
-
- *info = 0;
- if (! wants && ! wantsp) {
- *info = -1;
- } else if (! lsame_(howmny, "A") && ! somcon) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldvl < 1 || wants && *ldvl < *n) {
- *info = -8;
- } else if (*ldvr < 1 || wants && *ldvr < *n) {
- *info = -10;
- } else {
-
- /* Set M to the number of eigenpairs for which condition numbers */
- /* are required, and test MM. */
-
- if (somcon) {
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- } else {
- if (k < *n) {
- if (t[k + 1 + k * t_dim1] == 0.) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- } else {
- *m = *n;
- }
-
- if (*mm < *m) {
- *info = -13;
- } else if (*ldwork < 1 || wantsp && *ldwork < *n) {
- *info = -16;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTRSNA", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- if (*n == 1) {
- if (somcon) {
- if (! select[1]) {
- return;
- }
- }
- if (wants) {
- s[1] = 1.;
- }
- if (wantsp) {
- sep[1] = (d__1 = t[t_dim1 + 1], abs(d__1));
- }
- return;
- }
-
- /* Get machine constants */
-
- eps = dlamch_("P");
- smlnum = dlamch_("S") / eps;
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
-
- ks = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
-
- /* Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
-
- if (pair) {
- pair = FALSE_;
- goto L60;
- } else {
- if (k < *n) {
- pair = t[k + 1 + k * t_dim1] != 0.;
- }
- }
-
- /* Determine whether condition numbers are required for the k-th */
- /* eigenpair. */
-
- if (somcon) {
- if (pair) {
- if (! select[k] && ! select[k + 1]) {
- goto L60;
- }
- } else {
- if (! select[k]) {
- goto L60;
- }
- }
- }
-
- ++ks;
-
- if (wants) {
-
- /* Compute the reciprocal condition number of the k-th */
- /* eigenvalue. */
-
- if (! pair) {
-
- /* Real eigenvalue. */
-
- prod = ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
- vl_dim1 + 1], &c__1);
- rnrm = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- lnrm = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- s[ks] = abs(prod) / (rnrm * lnrm);
- } else {
-
- /* Complex eigenvalue. */
-
- prod1 = ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks *
- vl_dim1 + 1], &c__1);
- prod1 += ddot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks
- + 1) * vl_dim1 + 1], &c__1);
- prod2 = ddot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) *
- vr_dim1 + 1], &c__1);
- prod2 -= ddot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
- vr_dim1 + 1], &c__1);
- d__1 = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
- d__2 = dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
- rnrm = dlapy2_(&d__1, &d__2);
- d__1 = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
- d__2 = dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
- lnrm = dlapy2_(&d__1, &d__2);
- cond = dlapy2_(&prod1, &prod2) / (rnrm * lnrm);
- s[ks] = cond;
- s[ks + 1] = cond;
- }
- }
-
- if (wantsp) {
-
- /* Estimate the reciprocal condition number of the k-th */
- /* eigenvector. */
-
- /* Copy the matrix T to the array WORK and swap the diagonal */
- /* block beginning at T(k,k) to the (1,1) position. */
-
- dlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset],
- ldwork);
- ifst = k;
- ilst = 1;
- dtrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
- ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
-
- if (ierr == 1 || ierr == 2) {
-
- /* Could not swap because blocks not well separated */
-
- scale = 1.;
- est = bignum;
- } else {
-
- /* Reordering successful */
-
- if (work[work_dim1 + 2] == 0.) {
-
- /* Form C = T22 - lambda*I in WORK(2:N,2:N). */
-
- i__2 = *n;
- for (i__ = 2; i__ <= i__2; ++i__) {
- work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
- /* L20: */
- }
- n2 = 1;
- nn = *n - 1;
- } else {
-
- /* Triangularize the 2 by 2 block by unitary */
- /* transformation U = [ cs i*ss ] */
- /* [ i*ss cs ]. */
- /* such that the (1,1) position of WORK is complex */
- /* eigenvalue lambda with positive imaginary part. (2,2) */
- /* position of WORK is the complex eigenvalue lambda */
- /* with negative imaginary part. */
-
- mu = sqrt((d__1 = work[(work_dim1 << 1) + 1], abs(d__1)))
- * sqrt((d__2 = work[work_dim1 + 2], abs(d__2)));
- delta = dlapy2_(&mu, &work[work_dim1 + 2]);
- cs = mu / delta;
- sn = -work[work_dim1 + 2] / delta;
-
- /* Form */
-
- /* C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */
- /* [ mu ] */
- /* [ .. ] */
- /* [ .. ] */
- /* [ mu ] */
- /* where C**T is transpose of matrix C, */
- /* and RWORK is stored starting in the N+1-st column of */
- /* WORK. */
-
- i__2 = *n;
- for (j = 3; j <= i__2; ++j) {
- work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
- ;
- work[j + j * work_dim1] -= work[work_dim1 + 1];
- /* L30: */
- }
- work[(work_dim1 << 1) + 2] = 0.;
-
- work[(*n + 1) * work_dim1 + 1] = mu * 2.;
- i__2 = *n - 1;
- for (i__ = 2; i__ <= i__2; ++i__) {
- work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
- * work_dim1 + 1];
- /* L40: */
- }
- n2 = 2;
- nn = *n - 1 << 1;
- }
-
- /* Estimate norm(inv(C**T)) */
-
- est = 0.;
- kase = 0;
- L50:
- dlacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
- work_dim1 + 1], &iwork[1], &est, &kase, isave);
- if (kase != 0) {
- if (kase == 1) {
- if (n2 == 1) {
-
- /* Real eigenvalue: solve C**T*x = scale*c. */
-
- i__2 = *n - 1;
- dlaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1
- << 1) + 2], ldwork, dummy, &dumm, &scale,
- &work[(*n + 4) * work_dim1 + 1], &work[(*
- n + 6) * work_dim1 + 1], &ierr);
- } else {
-
- /* Complex eigenvalue: solve */
- /* C**T*(p+iq) = scale*(c+id) in real arithmetic. */
-
- i__2 = *n - 1;
- dlaqtr_(&c_true, &c_false, &i__2, &work[(
- work_dim1 << 1) + 2], ldwork, &work[(*n +
- 1) * work_dim1 + 1], &mu, &scale, &work[(*
- n + 4) * work_dim1 + 1], &work[(*n + 6) *
- work_dim1 + 1], &ierr);
- }
- } else {
- if (n2 == 1) {
-
- /* Real eigenvalue: solve C*x = scale*c. */
-
- i__2 = *n - 1;
- dlaqtr_(&c_false, &c_true, &i__2, &work[(
- work_dim1 << 1) + 2], ldwork, dummy, &
- dumm, &scale, &work[(*n + 4) * work_dim1
- + 1], &work[(*n + 6) * work_dim1 + 1], &
- ierr);
- } else {
-
- /* Complex eigenvalue: solve */
- /* C*(p+iq) = scale*(c+id) in real arithmetic. */
-
- i__2 = *n - 1;
- dlaqtr_(&c_false, &c_false, &i__2, &work[(
- work_dim1 << 1) + 2], ldwork, &work[(*n +
- 1) * work_dim1 + 1], &mu, &scale, &work[(*
- n + 4) * work_dim1 + 1], &work[(*n + 6) *
- work_dim1 + 1], &ierr);
-
- }
- }
-
- goto L50;
- }
- }
-
- sep[ks] = scale / f2cmax(est,smlnum);
- if (pair) {
- sep[ks + 1] = sep[ks];
- }
- }
-
- if (pair) {
- ++ks;
- }
-
- L60:
- ;
- }
- return;
-
- /* End of DTRSNA */
-
- } /* dtrsna_ */
|