|
- *> \brief \b DTRCON
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DTRCON + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrcon.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrcon.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrcon.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
- * IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIAG, NORM, UPLO
- * INTEGER INFO, LDA, N
- * DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTRCON estimates the reciprocal of the condition number of a
- *> triangular matrix A, in either the 1-norm or the infinity-norm.
- *>
- *> The norm of A is computed and an estimate is obtained for
- *> norm(inv(A)), then the reciprocal of the condition number is
- *> computed as
- *> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] NORM
- *> \verbatim
- *> NORM is CHARACTER*1
- *> Specifies whether the 1-norm condition number or the
- *> infinity-norm condition number is required:
- *> = '1' or 'O': 1-norm;
- *> = 'I': Infinity-norm.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': A is upper triangular;
- *> = 'L': A is lower triangular.
- *> \endverbatim
- *>
- *> \param[in] DIAG
- *> \verbatim
- *> DIAG is CHARACTER*1
- *> = 'N': A is non-unit triangular;
- *> = 'U': A is unit triangular.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> The triangular matrix A. If UPLO = 'U', the leading N-by-N
- *> upper triangular part of the array A contains the upper
- *> triangular matrix, and the strictly lower triangular part of
- *> A is not referenced. If UPLO = 'L', the leading N-by-N lower
- *> triangular part of the array A contains the lower triangular
- *> matrix, and the strictly upper triangular part of A is not
- *> referenced. If DIAG = 'U', the diagonal elements of A are
- *> also not referenced and are assumed to be 1.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] RCOND
- *> \verbatim
- *> RCOND is DOUBLE PRECISION
- *> The reciprocal of the condition number of the matrix A,
- *> computed as RCOND = 1/(norm(A) * norm(inv(A))).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (3*N)
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE DTRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
- $ IWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER DIAG, NORM, UPLO
- INTEGER INFO, LDA, N
- DOUBLE PRECISION RCOND
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION A( LDA, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL NOUNIT, ONENRM, UPPER
- CHARACTER NORMIN
- INTEGER IX, KASE, KASE1
- DOUBLE PRECISION AINVNM, ANORM, SCALE, SMLNUM, XNORM
- * ..
- * .. Local Arrays ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER IDAMAX
- DOUBLE PRECISION DLAMCH, DLANTR
- EXTERNAL LSAME, IDAMAX, DLAMCH, DLANTR
- * ..
- * .. External Subroutines ..
- EXTERNAL DLACN2, DLATRS, DRSCL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
- NOUNIT = LSAME( DIAG, 'N' )
- *
- IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -2
- ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -6
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DTRCON', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- RCOND = ONE
- RETURN
- END IF
- *
- RCOND = ZERO
- SMLNUM = DLAMCH( 'Safe minimum' )*DBLE( MAX( 1, N ) )
- *
- * Compute the norm of the triangular matrix A.
- *
- ANORM = DLANTR( NORM, UPLO, DIAG, N, N, A, LDA, WORK )
- *
- * Continue only if ANORM > 0.
- *
- IF( ANORM.GT.ZERO ) THEN
- *
- * Estimate the norm of the inverse of A.
- *
- AINVNM = ZERO
- NORMIN = 'N'
- IF( ONENRM ) THEN
- KASE1 = 1
- ELSE
- KASE1 = 2
- END IF
- KASE = 0
- 10 CONTINUE
- CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.KASE1 ) THEN
- *
- * Multiply by inv(A).
- *
- CALL DLATRS( UPLO, 'No transpose', DIAG, NORMIN, N, A,
- $ LDA, WORK, SCALE, WORK( 2*N+1 ), INFO )
- ELSE
- *
- * Multiply by inv(A**T).
- *
- CALL DLATRS( UPLO, 'Transpose', DIAG, NORMIN, N, A, LDA,
- $ WORK, SCALE, WORK( 2*N+1 ), INFO )
- END IF
- NORMIN = 'Y'
- *
- * Multiply by 1/SCALE if doing so will not cause overflow.
- *
- IF( SCALE.NE.ONE ) THEN
- IX = IDAMAX( N, WORK, 1 )
- XNORM = ABS( WORK( IX ) )
- IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
- $ GO TO 20
- CALL DRSCL( N, SCALE, WORK, 1 )
- END IF
- GO TO 10
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM.NE.ZERO )
- $ RCOND = ( ONE / ANORM ) / AINVNM
- END IF
- *
- 20 CONTINUE
- RETURN
- *
- * End of DTRCON
- *
- END
|