|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublereal c_b12 = 1.;
- static doublereal c_b20 = 0.;
- static doublereal c_b27 = -1.;
-
- /* > \brief \b DTPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex
- matrix, which is composed of two blocks. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DTPRFB + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtprfb.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtprfb.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtprfb.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DTPRFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, */
- /* V, LDV, T, LDT, A, LDA, B, LDB, WORK, LDWORK ) */
-
- /* CHARACTER DIRECT, SIDE, STOREV, TRANS */
- /* INTEGER K, L, LDA, LDB, LDT, LDV, LDWORK, M, N */
- /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), */
- /* $ V( LDV, * ), WORK( LDWORK, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DTPRFB applies a real "triangular-pentagonal" block reflector H or its */
- /* > transpose H**T to a real matrix C, which is composed of two */
- /* > blocks A and B, either from the left or right. */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] SIDE */
- /* > \verbatim */
- /* > SIDE is CHARACTER*1 */
- /* > = 'L': apply H or H**T from the Left */
- /* > = 'R': apply H or H**T from the Right */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > = 'N': apply H (No transpose) */
- /* > = 'T': apply H**T (Transpose) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DIRECT */
- /* > \verbatim */
- /* > DIRECT is CHARACTER*1 */
- /* > Indicates how H is formed from a product of elementary */
- /* > reflectors */
- /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
- /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] STOREV */
- /* > \verbatim */
- /* > STOREV is CHARACTER*1 */
- /* > Indicates how the vectors which define the elementary */
- /* > reflectors are stored: */
- /* > = 'C': Columns */
- /* > = 'R': Rows */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the matrix B. */
- /* > M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix B. */
- /* > N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] K */
- /* > \verbatim */
- /* > K is INTEGER */
- /* > The order of the matrix T, i.e. the number of elementary */
- /* > reflectors whose product defines the block reflector. */
- /* > K >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] L */
- /* > \verbatim */
- /* > L is INTEGER */
- /* > The order of the trapezoidal part of V. */
- /* > K >= L >= 0. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] V */
- /* > \verbatim */
- /* > V is DOUBLE PRECISION array, dimension */
- /* > (LDV,K) if STOREV = 'C' */
- /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
- /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
- /* > The pentagonal matrix V, which contains the elementary reflectors */
- /* > H(1), H(2), ..., H(K). See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV */
- /* > \verbatim */
- /* > LDV is INTEGER */
- /* > The leading dimension of the array V. */
- /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
- /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
- /* > if STOREV = 'R', LDV >= K. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] T */
- /* > \verbatim */
- /* > T is DOUBLE PRECISION array, dimension (LDT,K) */
- /* > The triangular K-by-K matrix T in the representation of the */
- /* > block reflector. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. */
- /* > LDT >= K. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension */
- /* > (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R' */
- /* > On entry, the K-by-N or M-by-K matrix A. */
- /* > On exit, A is overwritten by the corresponding block of */
- /* > H*C or H**T*C or C*H or C*H**T. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. */
- /* > If SIDE = 'L', LDA >= f2cmax(1,K); */
- /* > If SIDE = 'R', LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
- /* > On entry, the M-by-N matrix B. */
- /* > On exit, B is overwritten by the corresponding block of */
- /* > H*C or H**T*C or C*H or C*H**T. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. */
- /* > LDB >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension */
- /* > (LDWORK,N) if SIDE = 'L', */
- /* > (LDWORK,K) if SIDE = 'R'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDWORK */
- /* > \verbatim */
- /* > LDWORK is INTEGER */
- /* > The leading dimension of the array WORK. */
- /* > If SIDE = 'L', LDWORK >= K; */
- /* > if SIDE = 'R', LDWORK >= M. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup doubleOTHERauxiliary */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The matrix C is a composite matrix formed from blocks A and B. */
- /* > The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K, */
- /* > and if SIDE = 'L', A is of size K-by-N. */
- /* > */
- /* > If SIDE = 'R' and DIRECT = 'F', C = [A B]. */
- /* > */
- /* > If SIDE = 'L' and DIRECT = 'F', C = [A] */
- /* > [B]. */
- /* > */
- /* > If SIDE = 'R' and DIRECT = 'B', C = [B A]. */
- /* > */
- /* > If SIDE = 'L' and DIRECT = 'B', C = [B] */
- /* > [A]. */
- /* > */
- /* > The pentagonal matrix V is composed of a rectangular block V1 and a */
- /* > trapezoidal block V2. The size of the trapezoidal block is determined by */
- /* > the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular; */
- /* > if L=0, there is no trapezoidal block, thus V = V1 is rectangular. */
- /* > */
- /* > If DIRECT = 'F' and STOREV = 'C': V = [V1] */
- /* > [V2] */
- /* > - V2 is upper trapezoidal (first L rows of K-by-K upper triangular) */
- /* > */
- /* > If DIRECT = 'F' and STOREV = 'R': V = [V1 V2] */
- /* > */
- /* > - V2 is lower trapezoidal (first L columns of K-by-K lower triangular) */
- /* > */
- /* > If DIRECT = 'B' and STOREV = 'C': V = [V2] */
- /* > [V1] */
- /* > - V2 is lower trapezoidal (last L rows of K-by-K lower triangular) */
- /* > */
- /* > If DIRECT = 'B' and STOREV = 'R': V = [V2 V1] */
- /* > */
- /* > - V2 is upper trapezoidal (last L columns of K-by-K upper triangular) */
- /* > */
- /* > If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K. */
- /* > */
- /* > If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K. */
- /* > */
- /* > If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L. */
- /* > */
- /* > If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dtprfb_(char *side, char *trans, char *direct, char *
- storev, integer *m, integer *n, integer *k, integer *l, doublereal *v,
- integer *ldv, doublereal *t, integer *ldt, doublereal *a, integer *
- lda, doublereal *b, integer *ldb, doublereal *work, integer *ldwork)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, t_dim1, t_offset, v_dim1,
- v_offset, work_dim1, work_offset, i__1, i__2;
-
- /* Local variables */
- logical left, backward;
- integer i__, j;
- extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- logical right;
- extern /* Subroutine */ void dtrmm_(char *, char *, char *, char *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *);
- integer kp, mp, np;
- logical column, row, forward;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ========================================================================== */
-
-
- /* Quick return if possible */
-
- /* Parameter adjustments */
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- work_dim1 = *ldwork;
- work_offset = 1 + work_dim1 * 1;
- work -= work_offset;
-
- /* Function Body */
- if (*m <= 0 || *n <= 0 || *k <= 0 || *l < 0) {
- return;
- }
-
- if (lsame_(storev, "C")) {
- column = TRUE_;
- row = FALSE_;
- } else if (lsame_(storev, "R")) {
- column = FALSE_;
- row = TRUE_;
- } else {
- column = FALSE_;
- row = FALSE_;
- }
-
- if (lsame_(side, "L")) {
- left = TRUE_;
- right = FALSE_;
- } else if (lsame_(side, "R")) {
- left = FALSE_;
- right = TRUE_;
- } else {
- left = FALSE_;
- right = FALSE_;
- }
-
- if (lsame_(direct, "F")) {
- forward = TRUE_;
- backward = FALSE_;
- } else if (lsame_(direct, "B")) {
- forward = FALSE_;
- backward = TRUE_;
- } else {
- forward = FALSE_;
- backward = FALSE_;
- }
-
- /* --------------------------------------------------------------------------- */
-
- if (column && forward && left) {
-
- /* --------------------------------------------------------------------------- */
-
- /* Let W = [ I ] (K-by-K) */
- /* [ V ] (M-by-K) */
-
- /* Form H C or H**T C where C = [ A ] (K-by-N) */
- /* [ B ] (M-by-N) */
-
- /* H = I - W T W**T or H**T = I - W T**T W**T */
-
- /* A = A - T (A + V**T B) or A = A - T**T (A + V**T B) */
- /* B = B - V T (A + V**T B) or B = B - V T**T (A + V**T B) */
-
- /* --------------------------------------------------------------------------- */
-
- /* Computing MIN */
- i__1 = *m - *l + 1;
- mp = f2cmin(i__1,*m);
- /* Computing MIN */
- i__1 = *l + 1;
- kp = f2cmin(i__1,*k);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] = b[*m - *l + i__ + j * b_dim1];
- }
- }
- dtrmm_("L", "U", "T", "N", l, n, &c_b12, &v[mp + v_dim1], ldv, &work[
- work_offset], ldwork);
- i__1 = *m - *l;
- dgemm_("T", "N", l, n, &i__1, &c_b12, &v[v_offset], ldv, &b[b_offset],
- ldb, &c_b12, &work[work_offset], ldwork);
- i__1 = *k - *l;
- dgemm_("T", "N", &i__1, n, m, &c_b12, &v[kp * v_dim1 + 1], ldv, &b[
- b_offset], ldb, &c_b20, &work[kp + work_dim1], ldwork);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
- }
- }
-
- dtrmm_("L", "U", trans, "N", k, n, &c_b12, &t[t_offset], ldt, &work[
- work_offset], ldwork);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- i__1 = *m - *l;
- dgemm_("N", "N", &i__1, n, k, &c_b27, &v[v_offset], ldv, &work[
- work_offset], ldwork, &c_b12, &b[b_offset], ldb);
- i__1 = *k - *l;
- dgemm_("N", "N", l, n, &i__1, &c_b27, &v[mp + kp * v_dim1], ldv, &
- work[kp + work_dim1], ldwork, &c_b12, &b[mp + b_dim1], ldb);
- dtrmm_("L", "U", "N", "N", l, n, &c_b12, &v[mp + v_dim1], ldv, &work[
- work_offset], ldwork);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[*m - *l + i__ + j * b_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- /* --------------------------------------------------------------------------- */
-
- } else if (column && forward && right) {
-
- /* --------------------------------------------------------------------------- */
-
- /* Let W = [ I ] (K-by-K) */
- /* [ V ] (N-by-K) */
-
- /* Form C H or C H**T where C = [ A B ] (A is M-by-K, B is M-by-N) */
-
- /* H = I - W T W**T or H**T = I - W T**T W**T */
-
- /* A = A - (A + B V) T or A = A - (A + B V) T**T */
- /* B = B - (A + B V) T V**T or B = B - (A + B V) T**T V**T */
-
- /* --------------------------------------------------------------------------- */
-
- /* Computing MIN */
- i__1 = *n - *l + 1;
- np = f2cmin(i__1,*n);
- /* Computing MIN */
- i__1 = *l + 1;
- kp = f2cmin(i__1,*k);
-
- i__1 = *l;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] = b[i__ + (*n - *l + j) * b_dim1];
- }
- }
- dtrmm_("R", "U", "N", "N", m, l, &c_b12, &v[np + v_dim1], ldv, &work[
- work_offset], ldwork);
- i__1 = *n - *l;
- dgemm_("N", "N", m, l, &i__1, &c_b12, &b[b_offset], ldb, &v[v_offset],
- ldv, &c_b12, &work[work_offset], ldwork);
- i__1 = *k - *l;
- dgemm_("N", "N", m, &i__1, n, &c_b12, &b[b_offset], ldb, &v[kp *
- v_dim1 + 1], ldv, &c_b20, &work[kp * work_dim1 + 1], ldwork);
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
- }
- }
-
- dtrmm_("R", "U", trans, "N", m, k, &c_b12, &t[t_offset], ldt, &work[
- work_offset], ldwork);
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- i__1 = *n - *l;
- dgemm_("N", "T", m, &i__1, k, &c_b27, &work[work_offset], ldwork, &v[
- v_offset], ldv, &c_b12, &b[b_offset], ldb);
- i__1 = *k - *l;
- dgemm_("N", "T", m, l, &i__1, &c_b27, &work[kp * work_dim1 + 1],
- ldwork, &v[np + kp * v_dim1], ldv, &c_b12, &b[np * b_dim1 + 1]
- , ldb);
- dtrmm_("R", "U", "T", "N", m, l, &c_b12, &v[np + v_dim1], ldv, &work[
- work_offset], ldwork);
- i__1 = *l;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + (*n - *l + j) * b_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- /* --------------------------------------------------------------------------- */
-
- } else if (column && backward && left) {
-
- /* --------------------------------------------------------------------------- */
-
- /* Let W = [ V ] (M-by-K) */
- /* [ I ] (K-by-K) */
-
- /* Form H C or H**T C where C = [ B ] (M-by-N) */
- /* [ A ] (K-by-N) */
-
- /* H = I - W T W**T or H**T = I - W T**T W**T */
-
- /* A = A - T (A + V**T B) or A = A - T**T (A + V**T B) */
- /* B = B - V T (A + V**T B) or B = B - V T**T (A + V**T B) */
-
- /* --------------------------------------------------------------------------- */
-
- /* Computing MIN */
- i__1 = *l + 1;
- mp = f2cmin(i__1,*m);
- /* Computing MIN */
- i__1 = *k - *l + 1;
- kp = f2cmin(i__1,*k);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[*k - *l + i__ + j * work_dim1] = b[i__ + j * b_dim1];
- }
- }
-
- dtrmm_("L", "L", "T", "N", l, n, &c_b12, &v[kp * v_dim1 + 1], ldv, &
- work[kp + work_dim1], ldwork);
- i__1 = *m - *l;
- dgemm_("T", "N", l, n, &i__1, &c_b12, &v[mp + kp * v_dim1], ldv, &b[
- mp + b_dim1], ldb, &c_b12, &work[kp + work_dim1], ldwork);
- i__1 = *k - *l;
- dgemm_("T", "N", &i__1, n, m, &c_b12, &v[v_offset], ldv, &b[b_offset],
- ldb, &c_b20, &work[work_offset], ldwork);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
- }
- }
-
- dtrmm_("L", "L", trans, "N", k, n, &c_b12, &t[t_offset], ldt, &work[
- work_offset], ldwork);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- i__1 = *m - *l;
- dgemm_("N", "N", &i__1, n, k, &c_b27, &v[mp + v_dim1], ldv, &work[
- work_offset], ldwork, &c_b12, &b[mp + b_dim1], ldb);
- i__1 = *k - *l;
- dgemm_("N", "N", l, n, &i__1, &c_b27, &v[v_offset], ldv, &work[
- work_offset], ldwork, &c_b12, &b[b_offset], ldb);
- dtrmm_("L", "L", "N", "N", l, n, &c_b12, &v[kp * v_dim1 + 1], ldv, &
- work[kp + work_dim1], ldwork);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] -= work[*k - *l + i__ + j * work_dim1];
- }
- }
-
- /* --------------------------------------------------------------------------- */
-
- } else if (column && backward && right) {
-
- /* --------------------------------------------------------------------------- */
-
- /* Let W = [ V ] (N-by-K) */
- /* [ I ] (K-by-K) */
-
- /* Form C H or C H**T where C = [ B A ] (B is M-by-N, A is M-by-K) */
-
- /* H = I - W T W**T or H**T = I - W T**T W**T */
-
- /* A = A - (A + B V) T or A = A - (A + B V) T**T */
- /* B = B - (A + B V) T V**T or B = B - (A + B V) T**T V**T */
-
- /* --------------------------------------------------------------------------- */
-
- /* Computing MIN */
- i__1 = *l + 1;
- np = f2cmin(i__1,*n);
- /* Computing MIN */
- i__1 = *k - *l + 1;
- kp = f2cmin(i__1,*k);
-
- i__1 = *l;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + (*k - *l + j) * work_dim1] = b[i__ + j * b_dim1];
- }
- }
- dtrmm_("R", "L", "N", "N", m, l, &c_b12, &v[kp * v_dim1 + 1], ldv, &
- work[kp * work_dim1 + 1], ldwork);
- i__1 = *n - *l;
- dgemm_("N", "N", m, l, &i__1, &c_b12, &b[np * b_dim1 + 1], ldb, &v[np
- + kp * v_dim1], ldv, &c_b12, &work[kp * work_dim1 + 1],
- ldwork);
- i__1 = *k - *l;
- dgemm_("N", "N", m, &i__1, n, &c_b12, &b[b_offset], ldb, &v[v_offset],
- ldv, &c_b20, &work[work_offset], ldwork);
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
- }
- }
-
- dtrmm_("R", "L", trans, "N", m, k, &c_b12, &t[t_offset], ldt, &work[
- work_offset], ldwork);
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- i__1 = *n - *l;
- dgemm_("N", "T", m, &i__1, k, &c_b27, &work[work_offset], ldwork, &v[
- np + v_dim1], ldv, &c_b12, &b[np * b_dim1 + 1], ldb);
- i__1 = *k - *l;
- dgemm_("N", "T", m, l, &i__1, &c_b27, &work[work_offset], ldwork, &v[
- v_offset], ldv, &c_b12, &b[b_offset], ldb);
- dtrmm_("R", "L", "T", "N", m, l, &c_b12, &v[kp * v_dim1 + 1], ldv, &
- work[kp * work_dim1 + 1], ldwork);
- i__1 = *l;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] -= work[i__ + (*k - *l + j) * work_dim1];
- }
- }
-
- /* --------------------------------------------------------------------------- */
-
- } else if (row && forward && left) {
-
- /* --------------------------------------------------------------------------- */
-
- /* Let W = [ I V ] ( I is K-by-K, V is K-by-M ) */
-
- /* Form H C or H**T C where C = [ A ] (K-by-N) */
- /* [ B ] (M-by-N) */
-
- /* H = I - W**T T W or H**T = I - W**T T**T W */
-
- /* A = A - T (A + V B) or A = A - T**T (A + V B) */
- /* B = B - V**T T (A + V B) or B = B - V**T T**T (A + V B) */
-
- /* --------------------------------------------------------------------------- */
-
- /* Computing MIN */
- i__1 = *m - *l + 1;
- mp = f2cmin(i__1,*m);
- /* Computing MIN */
- i__1 = *l + 1;
- kp = f2cmin(i__1,*k);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] = b[*m - *l + i__ + j * b_dim1];
- }
- }
- dtrmm_("L", "L", "N", "N", l, n, &c_b12, &v[mp * v_dim1 + 1], ldv, &
- work[work_offset], ldb);
- i__1 = *m - *l;
- dgemm_("N", "N", l, n, &i__1, &c_b12, &v[v_offset], ldv, &b[b_offset],
- ldb, &c_b12, &work[work_offset], ldwork);
- i__1 = *k - *l;
- dgemm_("N", "N", &i__1, n, m, &c_b12, &v[kp + v_dim1], ldv, &b[
- b_offset], ldb, &c_b20, &work[kp + work_dim1], ldwork);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
- }
- }
-
- dtrmm_("L", "U", trans, "N", k, n, &c_b12, &t[t_offset], ldt, &work[
- work_offset], ldwork);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- i__1 = *m - *l;
- dgemm_("T", "N", &i__1, n, k, &c_b27, &v[v_offset], ldv, &work[
- work_offset], ldwork, &c_b12, &b[b_offset], ldb);
- i__1 = *k - *l;
- dgemm_("T", "N", l, n, &i__1, &c_b27, &v[kp + mp * v_dim1], ldv, &
- work[kp + work_dim1], ldwork, &c_b12, &b[mp + b_dim1], ldb);
- dtrmm_("L", "L", "T", "N", l, n, &c_b12, &v[mp * v_dim1 + 1], ldv, &
- work[work_offset], ldwork);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[*m - *l + i__ + j * b_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- /* --------------------------------------------------------------------------- */
-
- } else if (row && forward && right) {
-
- /* --------------------------------------------------------------------------- */
-
- /* Let W = [ I V ] ( I is K-by-K, V is K-by-N ) */
-
- /* Form C H or C H**T where C = [ A B ] (A is M-by-K, B is M-by-N) */
-
- /* H = I - W**T T W or H**T = I - W**T T**T W */
-
- /* A = A - (A + B V**T) T or A = A - (A + B V**T) T**T */
- /* B = B - (A + B V**T) T V or B = B - (A + B V**T) T**T V */
-
- /* --------------------------------------------------------------------------- */
-
- /* Computing MIN */
- i__1 = *n - *l + 1;
- np = f2cmin(i__1,*n);
- /* Computing MIN */
- i__1 = *l + 1;
- kp = f2cmin(i__1,*k);
-
- i__1 = *l;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] = b[i__ + (*n - *l + j) * b_dim1];
- }
- }
- dtrmm_("R", "L", "T", "N", m, l, &c_b12, &v[np * v_dim1 + 1], ldv, &
- work[work_offset], ldwork);
- i__1 = *n - *l;
- dgemm_("N", "T", m, l, &i__1, &c_b12, &b[b_offset], ldb, &v[v_offset],
- ldv, &c_b12, &work[work_offset], ldwork);
- i__1 = *k - *l;
- dgemm_("N", "T", m, &i__1, n, &c_b12, &b[b_offset], ldb, &v[kp +
- v_dim1], ldv, &c_b20, &work[kp * work_dim1 + 1], ldwork);
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
- }
- }
-
- dtrmm_("R", "U", trans, "N", m, k, &c_b12, &t[t_offset], ldt, &work[
- work_offset], ldwork);
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- i__1 = *n - *l;
- dgemm_("N", "N", m, &i__1, k, &c_b27, &work[work_offset], ldwork, &v[
- v_offset], ldv, &c_b12, &b[b_offset], ldb);
- i__1 = *k - *l;
- dgemm_("N", "N", m, l, &i__1, &c_b27, &work[kp * work_dim1 + 1],
- ldwork, &v[kp + np * v_dim1], ldv, &c_b12, &b[np * b_dim1 + 1]
- , ldb);
- dtrmm_("R", "L", "N", "N", m, l, &c_b12, &v[np * v_dim1 + 1], ldv, &
- work[work_offset], ldwork);
- i__1 = *l;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + (*n - *l + j) * b_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- /* --------------------------------------------------------------------------- */
-
- } else if (row && backward && left) {
-
- /* --------------------------------------------------------------------------- */
-
- /* Let W = [ V I ] ( I is K-by-K, V is K-by-M ) */
-
- /* Form H C or H**T C where C = [ B ] (M-by-N) */
- /* [ A ] (K-by-N) */
-
- /* H = I - W**T T W or H**T = I - W**T T**T W */
-
- /* A = A - T (A + V B) or A = A - T**T (A + V B) */
- /* B = B - V**T T (A + V B) or B = B - V**T T**T (A + V B) */
-
- /* --------------------------------------------------------------------------- */
-
- /* Computing MIN */
- i__1 = *l + 1;
- mp = f2cmin(i__1,*m);
- /* Computing MIN */
- i__1 = *k - *l + 1;
- kp = f2cmin(i__1,*k);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[*k - *l + i__ + j * work_dim1] = b[i__ + j * b_dim1];
- }
- }
- dtrmm_("L", "U", "N", "N", l, n, &c_b12, &v[kp + v_dim1], ldv, &work[
- kp + work_dim1], ldwork);
- i__1 = *m - *l;
- dgemm_("N", "N", l, n, &i__1, &c_b12, &v[kp + mp * v_dim1], ldv, &b[
- mp + b_dim1], ldb, &c_b12, &work[kp + work_dim1], ldwork);
- i__1 = *k - *l;
- dgemm_("N", "N", &i__1, n, m, &c_b12, &v[v_offset], ldv, &b[b_offset],
- ldb, &c_b20, &work[work_offset], ldwork);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
- }
- }
-
- dtrmm_("L", "L ", trans, "N", k, n, &c_b12, &t[t_offset], ldt, &work[
- work_offset], ldwork);
-
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- i__1 = *m - *l;
- dgemm_("T", "N", &i__1, n, k, &c_b27, &v[mp * v_dim1 + 1], ldv, &work[
- work_offset], ldwork, &c_b12, &b[mp + b_dim1], ldb);
- i__1 = *k - *l;
- dgemm_("T", "N", l, n, &i__1, &c_b27, &v[v_offset], ldv, &work[
- work_offset], ldwork, &c_b12, &b[b_offset], ldb);
- dtrmm_("L", "U", "T", "N", l, n, &c_b12, &v[kp + v_dim1], ldv, &work[
- kp + work_dim1], ldwork);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *l;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] -= work[*k - *l + i__ + j * work_dim1];
- }
- }
-
- /* --------------------------------------------------------------------------- */
-
- } else if (row && backward && right) {
-
- /* --------------------------------------------------------------------------- */
-
- /* Let W = [ V I ] ( I is K-by-K, V is K-by-N ) */
-
- /* Form C H or C H**T where C = [ B A ] (A is M-by-K, B is M-by-N) */
-
- /* H = I - W**T T W or H**T = I - W**T T**T W */
-
- /* A = A - (A + B V**T) T or A = A - (A + B V**T) T**T */
- /* B = B - (A + B V**T) T V or B = B - (A + B V**T) T**T V */
-
- /* --------------------------------------------------------------------------- */
-
- /* Computing MIN */
- i__1 = *l + 1;
- np = f2cmin(i__1,*n);
- /* Computing MIN */
- i__1 = *k - *l + 1;
- kp = f2cmin(i__1,*k);
-
- i__1 = *l;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + (*k - *l + j) * work_dim1] = b[i__ + j * b_dim1];
- }
- }
- dtrmm_("R", "U", "T", "N", m, l, &c_b12, &v[kp + v_dim1], ldv, &work[
- kp * work_dim1 + 1], ldwork);
- i__1 = *n - *l;
- dgemm_("N", "T", m, l, &i__1, &c_b12, &b[np * b_dim1 + 1], ldb, &v[kp
- + np * v_dim1], ldv, &c_b12, &work[kp * work_dim1 + 1],
- ldwork);
- i__1 = *k - *l;
- dgemm_("N", "T", m, &i__1, n, &c_b12, &b[b_offset], ldb, &v[v_offset],
- ldv, &c_b20, &work[work_offset], ldwork);
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[i__ + j * work_dim1] += a[i__ + j * a_dim1];
- }
- }
-
- dtrmm_("R", "L", trans, "N", m, k, &c_b12, &t[t_offset], ldt, &work[
- work_offset], ldwork);
-
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
- }
- }
-
- i__1 = *n - *l;
- dgemm_("N", "N", m, &i__1, k, &c_b27, &work[work_offset], ldwork, &v[
- np * v_dim1 + 1], ldv, &c_b12, &b[np * b_dim1 + 1], ldb);
- i__1 = *k - *l;
- dgemm_("N", "N", m, l, &i__1, &c_b27, &work[work_offset], ldwork, &v[
- v_offset], ldv, &c_b12, &b[b_offset], ldb);
- dtrmm_("R", "U", "N", "N", m, l, &c_b12, &v[kp + v_dim1], ldv, &work[
- kp * work_dim1 + 1], ldwork);
- i__1 = *l;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] -= work[i__ + (*k - *l + j) * work_dim1];
- }
- }
-
- }
-
- return;
-
- /* End of DTPRFB */
-
- } /* dtprfb_ */
|