|
- *> \brief \b DTGSYL
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DTGSYL + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsyl.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsyl.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsyl.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
- * LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
- * IWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER TRANS
- * INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
- * $ LWORK, M, N
- * DOUBLE PRECISION DIF, SCALE
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
- * $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
- * $ WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DTGSYL solves the generalized Sylvester equation:
- *>
- *> A * R - L * B = scale * C (1)
- *> D * R - L * E = scale * F
- *>
- *> where R and L are unknown m-by-n matrices, (A, D), (B, E) and
- *> (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
- *> respectively, with real entries. (A, D) and (B, E) must be in
- *> generalized (real) Schur canonical form, i.e. A, B are upper quasi
- *> triangular and D, E are upper triangular.
- *>
- *> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
- *> scaling factor chosen to avoid overflow.
- *>
- *> In matrix notation (1) is equivalent to solve Zx = scale b, where
- *> Z is defined as
- *>
- *> Z = [ kron(In, A) -kron(B**T, Im) ] (2)
- *> [ kron(In, D) -kron(E**T, Im) ].
- *>
- *> Here Ik is the identity matrix of size k and X**T is the transpose of
- *> X. kron(X, Y) is the Kronecker product between the matrices X and Y.
- *>
- *> If TRANS = 'T', DTGSYL solves the transposed system Z**T*y = scale*b,
- *> which is equivalent to solve for R and L in
- *>
- *> A**T * R + D**T * L = scale * C (3)
- *> R * B**T + L * E**T = scale * -F
- *>
- *> This case (TRANS = 'T') is used to compute an one-norm-based estimate
- *> of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
- *> and (B,E), using DLACON.
- *>
- *> If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate
- *> of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
- *> reciprocal of the smallest singular value of Z. See [1-2] for more
- *> information.
- *>
- *> This is a level 3 BLAS algorithm.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': solve the generalized Sylvester equation (1).
- *> = 'T': solve the 'transposed' system (3).
- *> \endverbatim
- *>
- *> \param[in] IJOB
- *> \verbatim
- *> IJOB is INTEGER
- *> Specifies what kind of functionality to be performed.
- *> = 0: solve (1) only.
- *> = 1: The functionality of 0 and 3.
- *> = 2: The functionality of 0 and 4.
- *> = 3: Only an estimate of Dif[(A,D), (B,E)] is computed.
- *> (look ahead strategy IJOB = 1 is used).
- *> = 4: Only an estimate of Dif[(A,D), (B,E)] is computed.
- *> ( DGECON on sub-systems is used ).
- *> Not referenced if TRANS = 'T'.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The order of the matrices A and D, and the row dimension of
- *> the matrices C, F, R and L.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices B and E, and the column dimension
- *> of the matrices C, F, R and L.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA, M)
- *> The upper quasi triangular matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1, M).
- *> \endverbatim
- *>
- *> \param[in] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB, N)
- *> The upper quasi triangular matrix B.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1, N).
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC, N)
- *> On entry, C contains the right-hand-side of the first matrix
- *> equation in (1) or (3).
- *> On exit, if IJOB = 0, 1 or 2, C has been overwritten by
- *> the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
- *> the solution achieved during the computation of the
- *> Dif-estimate.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1, M).
- *> \endverbatim
- *>
- *> \param[in] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (LDD, M)
- *> The upper triangular matrix D.
- *> \endverbatim
- *>
- *> \param[in] LDD
- *> \verbatim
- *> LDD is INTEGER
- *> The leading dimension of the array D. LDD >= max(1, M).
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (LDE, N)
- *> The upper triangular matrix E.
- *> \endverbatim
- *>
- *> \param[in] LDE
- *> \verbatim
- *> LDE is INTEGER
- *> The leading dimension of the array E. LDE >= max(1, N).
- *> \endverbatim
- *>
- *> \param[in,out] F
- *> \verbatim
- *> F is DOUBLE PRECISION array, dimension (LDF, N)
- *> On entry, F contains the right-hand-side of the second matrix
- *> equation in (1) or (3).
- *> On exit, if IJOB = 0, 1 or 2, F has been overwritten by
- *> the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
- *> the solution achieved during the computation of the
- *> Dif-estimate.
- *> \endverbatim
- *>
- *> \param[in] LDF
- *> \verbatim
- *> LDF is INTEGER
- *> The leading dimension of the array F. LDF >= max(1, M).
- *> \endverbatim
- *>
- *> \param[out] DIF
- *> \verbatim
- *> DIF is DOUBLE PRECISION
- *> On exit DIF is the reciprocal of a lower bound of the
- *> reciprocal of the Dif-function, i.e. DIF is an upper bound of
- *> Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
- *> IF IJOB = 0 or TRANS = 'T', DIF is not touched.
- *> \endverbatim
- *>
- *> \param[out] SCALE
- *> \verbatim
- *> SCALE is DOUBLE PRECISION
- *> On exit SCALE is the scaling factor in (1) or (3).
- *> If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
- *> to a slightly perturbed system but the input matrices A, B, D
- *> and E have not been changed. If SCALE = 0, C and F hold the
- *> solutions R and L, respectively, to the homogeneous system
- *> with C = F = 0. Normally, SCALE = 1.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK > = 1.
- *> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (M+N+6)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> =0: successful exit
- *> <0: If INFO = -i, the i-th argument had an illegal value.
- *> >0: (A, D) and (B, E) have common or close eigenvalues.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleSYcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
- *> Umea University, S-901 87 Umea, Sweden.
- *
- *> \par References:
- * ================
- *>
- *> \verbatim
- *>
- *> [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
- *> for Solving the Generalized Sylvester Equation and Estimating the
- *> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
- *> Department of Computing Science, Umea University, S-901 87 Umea,
- *> Sweden, December 1993, Revised April 1994, Also as LAPACK Working
- *> Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
- *> No 1, 1996.
- *>
- *> [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
- *> Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
- *> Appl., 15(4):1045-1060, 1994
- *>
- *> [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
- *> Condition Estimators for Solving the Generalized Sylvester
- *> Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
- *> July 1989, pp 745-751.
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
- $ LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
- $ IWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER TRANS
- INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
- $ LWORK, M, N
- DOUBLE PRECISION DIF, SCALE
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
- $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
- $ WORK( * )
- * ..
- *
- * =====================================================================
- * Replaced various illegal calls to DCOPY by calls to DLASET.
- * Sven Hammarling, 1/5/02.
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, NOTRAN
- INTEGER I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
- $ LINFO, LWMIN, MB, NB, P, PPQQ, PQ, Q
- DOUBLE PRECISION DSCALE, DSUM, SCALE2, SCALOC
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM, DLACPY, DLASET, DSCAL, DTGSY2, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Decode and test input parameters
- *
- INFO = 0
- NOTRAN = LSAME( TRANS, 'N' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
- INFO = -1
- ELSE IF( NOTRAN ) THEN
- IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
- INFO = -2
- END IF
- END IF
- IF( INFO.EQ.0 ) THEN
- IF( M.LE.0 ) THEN
- INFO = -3
- ELSE IF( N.LE.0 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -8
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -10
- ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
- INFO = -12
- ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
- INFO = -14
- ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
- INFO = -16
- END IF
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- IF( NOTRAN ) THEN
- IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
- LWMIN = MAX( 1, 2*M*N )
- ELSE
- LWMIN = 1
- END IF
- ELSE
- LWMIN = 1
- END IF
- WORK( 1 ) = LWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -20
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DTGSYL', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) THEN
- SCALE = 1
- IF( NOTRAN ) THEN
- IF( IJOB.NE.0 ) THEN
- DIF = 0
- END IF
- END IF
- RETURN
- END IF
- *
- * Determine optimal block sizes MB and NB
- *
- MB = ILAENV( 2, 'DTGSYL', TRANS, M, N, -1, -1 )
- NB = ILAENV( 5, 'DTGSYL', TRANS, M, N, -1, -1 )
- *
- ISOLVE = 1
- IFUNC = 0
- IF( NOTRAN ) THEN
- IF( IJOB.GE.3 ) THEN
- IFUNC = IJOB - 2
- CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
- CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
- ELSE IF( IJOB.GE.1 ) THEN
- ISOLVE = 2
- END IF
- END IF
- *
- IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
- $ THEN
- *
- DO 30 IROUND = 1, ISOLVE
- *
- * Use unblocked Level 2 solver
- *
- DSCALE = ZERO
- DSUM = ONE
- PQ = 0
- CALL DTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
- $ LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
- $ IWORK, PQ, INFO )
- IF( DSCALE.NE.ZERO ) THEN
- IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
- DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
- ELSE
- DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
- END IF
- END IF
- *
- IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
- IF( NOTRAN ) THEN
- IFUNC = IJOB
- END IF
- SCALE2 = SCALE
- CALL DLACPY( 'F', M, N, C, LDC, WORK, M )
- CALL DLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
- CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
- CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
- ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
- CALL DLACPY( 'F', M, N, WORK, M, C, LDC )
- CALL DLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
- SCALE = SCALE2
- END IF
- 30 CONTINUE
- *
- RETURN
- END IF
- *
- * Determine block structure of A
- *
- P = 0
- I = 1
- 40 CONTINUE
- IF( I.GT.M )
- $ GO TO 50
- P = P + 1
- IWORK( P ) = I
- I = I + MB
- IF( I.GE.M )
- $ GO TO 50
- IF( A( I, I-1 ).NE.ZERO )
- $ I = I + 1
- GO TO 40
- 50 CONTINUE
- *
- IWORK( P+1 ) = M + 1
- IF( IWORK( P ).EQ.IWORK( P+1 ) )
- $ P = P - 1
- *
- * Determine block structure of B
- *
- Q = P + 1
- J = 1
- 60 CONTINUE
- IF( J.GT.N )
- $ GO TO 70
- Q = Q + 1
- IWORK( Q ) = J
- J = J + NB
- IF( J.GE.N )
- $ GO TO 70
- IF( B( J, J-1 ).NE.ZERO )
- $ J = J + 1
- GO TO 60
- 70 CONTINUE
- *
- IWORK( Q+1 ) = N + 1
- IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
- $ Q = Q - 1
- *
- IF( NOTRAN ) THEN
- *
- DO 150 IROUND = 1, ISOLVE
- *
- * Solve (I, J)-subsystem
- * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
- * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
- * for I = P, P - 1,..., 1; J = 1, 2,..., Q
- *
- DSCALE = ZERO
- DSUM = ONE
- PQ = 0
- SCALE = ONE
- DO 130 J = P + 2, Q
- JS = IWORK( J )
- JE = IWORK( J+1 ) - 1
- NB = JE - JS + 1
- DO 120 I = P, 1, -1
- IS = IWORK( I )
- IE = IWORK( I+1 ) - 1
- MB = IE - IS + 1
- PPQQ = 0
- CALL DTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
- $ B( JS, JS ), LDB, C( IS, JS ), LDC,
- $ D( IS, IS ), LDD, E( JS, JS ), LDE,
- $ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
- $ IWORK( Q+2 ), PPQQ, LINFO )
- IF( LINFO.GT.0 )
- $ INFO = LINFO
- *
- PQ = PQ + PPQQ
- IF( SCALOC.NE.ONE ) THEN
- DO 80 K = 1, JS - 1
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 80 CONTINUE
- DO 90 K = JS, JE
- CALL DSCAL( IS-1, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( IS-1, SCALOC, F( 1, K ), 1 )
- 90 CONTINUE
- DO 100 K = JS, JE
- CALL DSCAL( M-IE, SCALOC, C( IE+1, K ), 1 )
- CALL DSCAL( M-IE, SCALOC, F( IE+1, K ), 1 )
- 100 CONTINUE
- DO 110 K = JE + 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 110 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- *
- * Substitute R(I, J) and L(I, J) into remaining
- * equation.
- *
- IF( I.GT.1 ) THEN
- CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
- $ A( 1, IS ), LDA, C( IS, JS ), LDC, ONE,
- $ C( 1, JS ), LDC )
- CALL DGEMM( 'N', 'N', IS-1, NB, MB, -ONE,
- $ D( 1, IS ), LDD, C( IS, JS ), LDC, ONE,
- $ F( 1, JS ), LDF )
- END IF
- IF( J.LT.Q ) THEN
- CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE,
- $ F( IS, JS ), LDF, B( JS, JE+1 ), LDB,
- $ ONE, C( IS, JE+1 ), LDC )
- CALL DGEMM( 'N', 'N', MB, N-JE, NB, ONE,
- $ F( IS, JS ), LDF, E( JS, JE+1 ), LDE,
- $ ONE, F( IS, JE+1 ), LDF )
- END IF
- 120 CONTINUE
- 130 CONTINUE
- IF( DSCALE.NE.ZERO ) THEN
- IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
- DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
- ELSE
- DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
- END IF
- END IF
- IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
- IF( NOTRAN ) THEN
- IFUNC = IJOB
- END IF
- SCALE2 = SCALE
- CALL DLACPY( 'F', M, N, C, LDC, WORK, M )
- CALL DLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
- CALL DLASET( 'F', M, N, ZERO, ZERO, C, LDC )
- CALL DLASET( 'F', M, N, ZERO, ZERO, F, LDF )
- ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
- CALL DLACPY( 'F', M, N, WORK, M, C, LDC )
- CALL DLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
- SCALE = SCALE2
- END IF
- 150 CONTINUE
- *
- ELSE
- *
- * Solve transposed (I, J)-subsystem
- * A(I, I)**T * R(I, J) + D(I, I)**T * L(I, J) = C(I, J)
- * R(I, J) * B(J, J)**T + L(I, J) * E(J, J)**T = -F(I, J)
- * for I = 1,2,..., P; J = Q, Q-1,..., 1
- *
- SCALE = ONE
- DO 210 I = 1, P
- IS = IWORK( I )
- IE = IWORK( I+1 ) - 1
- MB = IE - IS + 1
- DO 200 J = Q, P + 2, -1
- JS = IWORK( J )
- JE = IWORK( J+1 ) - 1
- NB = JE - JS + 1
- CALL DTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
- $ B( JS, JS ), LDB, C( IS, JS ), LDC,
- $ D( IS, IS ), LDD, E( JS, JS ), LDE,
- $ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
- $ IWORK( Q+2 ), PPQQ, LINFO )
- IF( LINFO.GT.0 )
- $ INFO = LINFO
- IF( SCALOC.NE.ONE ) THEN
- DO 160 K = 1, JS - 1
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 160 CONTINUE
- DO 170 K = JS, JE
- CALL DSCAL( IS-1, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( IS-1, SCALOC, F( 1, K ), 1 )
- 170 CONTINUE
- DO 180 K = JS, JE
- CALL DSCAL( M-IE, SCALOC, C( IE+1, K ), 1 )
- CALL DSCAL( M-IE, SCALOC, F( IE+1, K ), 1 )
- 180 CONTINUE
- DO 190 K = JE + 1, N
- CALL DSCAL( M, SCALOC, C( 1, K ), 1 )
- CALL DSCAL( M, SCALOC, F( 1, K ), 1 )
- 190 CONTINUE
- SCALE = SCALE*SCALOC
- END IF
- *
- * Substitute R(I, J) and L(I, J) into remaining equation.
- *
- IF( J.GT.P+2 ) THEN
- CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE, C( IS, JS ),
- $ LDC, B( 1, JS ), LDB, ONE, F( IS, 1 ),
- $ LDF )
- CALL DGEMM( 'N', 'T', MB, JS-1, NB, ONE, F( IS, JS ),
- $ LDF, E( 1, JS ), LDE, ONE, F( IS, 1 ),
- $ LDF )
- END IF
- IF( I.LT.P ) THEN
- CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
- $ A( IS, IE+1 ), LDA, C( IS, JS ), LDC, ONE,
- $ C( IE+1, JS ), LDC )
- CALL DGEMM( 'T', 'N', M-IE, NB, MB, -ONE,
- $ D( IS, IE+1 ), LDD, F( IS, JS ), LDF, ONE,
- $ C( IE+1, JS ), LDC )
- END IF
- 200 CONTINUE
- 210 CONTINUE
- *
- END IF
- *
- WORK( 1 ) = LWMIN
- *
- RETURN
- *
- * End of DTGSYL
- *
- END
|