|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__2 = 2;
- static integer c_n1 = -1;
- static integer c__5 = 5;
- static doublereal c_b14 = 0.;
- static integer c__1 = 1;
- static doublereal c_b51 = -1.;
- static doublereal c_b52 = 1.;
-
- /* > \brief \b DTGSYL */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DTGSYL + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsyl.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsyl.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsyl.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, */
- /* LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, */
- /* IWORK, INFO ) */
-
- /* CHARACTER TRANS */
- /* INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, */
- /* $ LWORK, M, N */
- /* DOUBLE PRECISION DIF, SCALE */
- /* INTEGER IWORK( * ) */
- /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ), */
- /* $ D( LDD, * ), E( LDE, * ), F( LDF, * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DTGSYL solves the generalized Sylvester equation: */
- /* > */
- /* > A * R - L * B = scale * C (1) */
- /* > D * R - L * E = scale * F */
- /* > */
- /* > where R and L are unknown m-by-n matrices, (A, D), (B, E) and */
- /* > (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, */
- /* > respectively, with real entries. (A, D) and (B, E) must be in */
- /* > generalized (real) Schur canonical form, i.e. A, B are upper quasi */
- /* > triangular and D, E are upper triangular. */
- /* > */
- /* > The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
- /* > scaling factor chosen to avoid overflow. */
- /* > */
- /* > In matrix notation (1) is equivalent to solve Zx = scale b, where */
- /* > Z is defined as */
- /* > */
- /* > Z = [ kron(In, A) -kron(B**T, Im) ] (2) */
- /* > [ kron(In, D) -kron(E**T, Im) ]. */
- /* > */
- /* > Here Ik is the identity matrix of size k and X**T is the transpose of */
- /* > X. kron(X, Y) is the Kronecker product between the matrices X and Y. */
- /* > */
- /* > If TRANS = 'T', DTGSYL solves the transposed system Z**T*y = scale*b, */
- /* > which is equivalent to solve for R and L in */
- /* > */
- /* > A**T * R + D**T * L = scale * C (3) */
- /* > R * B**T + L * E**T = scale * -F */
- /* > */
- /* > This case (TRANS = 'T') is used to compute an one-norm-based estimate */
- /* > of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) */
- /* > and (B,E), using DLACON. */
- /* > */
- /* > If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate */
- /* > of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the */
- /* > reciprocal of the smallest singular value of Z. See [1-2] for more */
- /* > information. */
- /* > */
- /* > This is a level 3 BLAS algorithm. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] TRANS */
- /* > \verbatim */
- /* > TRANS is CHARACTER*1 */
- /* > = 'N': solve the generalized Sylvester equation (1). */
- /* > = 'T': solve the 'transposed' system (3). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IJOB */
- /* > \verbatim */
- /* > IJOB is INTEGER */
- /* > Specifies what kind of functionality to be performed. */
- /* > = 0: solve (1) only. */
- /* > = 1: The functionality of 0 and 3. */
- /* > = 2: The functionality of 0 and 4. */
- /* > = 3: Only an estimate of Dif[(A,D), (B,E)] is computed. */
- /* > (look ahead strategy IJOB = 1 is used). */
- /* > = 4: Only an estimate of Dif[(A,D), (B,E)] is computed. */
- /* > ( DGECON on sub-systems is used ). */
- /* > Not referenced if TRANS = 'T'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The order of the matrices A and D, and the row dimension of */
- /* > the matrices C, F, R and L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices B and E, and the column dimension */
- /* > of the matrices C, F, R and L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA, M) */
- /* > The upper quasi triangular matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1, M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB, N) */
- /* > The upper quasi triangular matrix B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1, N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] C */
- /* > \verbatim */
- /* > C is DOUBLE PRECISION array, dimension (LDC, N) */
- /* > On entry, C contains the right-hand-side of the first matrix */
- /* > equation in (1) or (3). */
- /* > On exit, if IJOB = 0, 1 or 2, C has been overwritten by */
- /* > the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, */
- /* > the solution achieved during the computation of the */
- /* > Dif-estimate. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDC */
- /* > \verbatim */
- /* > LDC is INTEGER */
- /* > The leading dimension of the array C. LDC >= f2cmax(1, M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (LDD, M) */
- /* > The upper triangular matrix D. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDD */
- /* > \verbatim */
- /* > LDD is INTEGER */
- /* > The leading dimension of the array D. LDD >= f2cmax(1, M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] E */
- /* > \verbatim */
- /* > E is DOUBLE PRECISION array, dimension (LDE, N) */
- /* > The upper triangular matrix E. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDE */
- /* > \verbatim */
- /* > LDE is INTEGER */
- /* > The leading dimension of the array E. LDE >= f2cmax(1, N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] F */
- /* > \verbatim */
- /* > F is DOUBLE PRECISION array, dimension (LDF, N) */
- /* > On entry, F contains the right-hand-side of the second matrix */
- /* > equation in (1) or (3). */
- /* > On exit, if IJOB = 0, 1 or 2, F has been overwritten by */
- /* > the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, */
- /* > the solution achieved during the computation of the */
- /* > Dif-estimate. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDF */
- /* > \verbatim */
- /* > LDF is INTEGER */
- /* > The leading dimension of the array F. LDF >= f2cmax(1, M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DIF */
- /* > \verbatim */
- /* > DIF is DOUBLE PRECISION */
- /* > On exit DIF is the reciprocal of a lower bound of the */
- /* > reciprocal of the Dif-function, i.e. DIF is an upper bound of */
- /* > Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). */
- /* > IF IJOB = 0 or TRANS = 'T', DIF is not touched. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE */
- /* > \verbatim */
- /* > SCALE is DOUBLE PRECISION */
- /* > On exit SCALE is the scaling factor in (1) or (3). */
- /* > If 0 < SCALE < 1, C and F hold the solutions R and L, resp., */
- /* > to a slightly perturbed system but the input matrices A, B, D */
- /* > and E have not been changed. If SCALE = 0, C and F hold the */
- /* > solutions R and L, respectively, to the homogeneous system */
- /* > with C = F = 0. Normally, SCALE = 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK > = 1. */
- /* > If IJOB = 1 or 2 and TRANS = 'N', LWORK >= f2cmax(1,2*M*N). */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (M+N+6) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > =0: successful exit */
- /* > <0: If INFO = -i, the i-th argument had an illegal value. */
- /* > >0: (A, D) and (B, E) have common or close eigenvalues. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup doubleSYcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* > Umea University, S-901 87 Umea, Sweden. */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
- /* > for Solving the Generalized Sylvester Equation and Estimating the */
- /* > Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
- /* > Department of Computing Science, Umea University, S-901 87 Umea, */
- /* > Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
- /* > Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
- /* > No 1, 1996. */
- /* > */
- /* > [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester */
- /* > Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. */
- /* > Appl., 15(4):1045-1060, 1994 */
- /* > */
- /* > [3] B. Kagstrom and L. Westin, Generalized Schur Methods with */
- /* > Condition Estimators for Solving the Generalized Sylvester */
- /* > Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, */
- /* > July 1989, pp 745-751. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dtgsyl_(char *trans, integer *ijob, integer *m, integer *
- n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
- doublereal *c__, integer *ldc, doublereal *d__, integer *ldd,
- doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *
- scale, doublereal *dif, doublereal *work, integer *lwork, integer *
- iwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
- d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3,
- i__4;
-
- /* Local variables */
- doublereal dsum;
- integer ppqq, i__, j, k, p, q;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *), dgemm_(char *, char *, integer *, integer *, integer *
- , doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- integer ifunc, linfo, lwmin;
- doublereal scale2;
- extern /* Subroutine */ void dtgsy2_(char *, integer *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *, integer *);
- integer ie, je, mb, nb;
- doublereal dscale;
- integer is, js, pq;
- doublereal scaloc;
- extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- integer iround;
- logical notran;
- integer isolve;
- logical lquery;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
- /* Replaced various illegal calls to DCOPY by calls to DLASET. */
- /* Sven Hammarling, 1/5/02. */
-
-
- /* Decode and test input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- d_dim1 = *ldd;
- d_offset = 1 + d_dim1 * 1;
- d__ -= d_offset;
- e_dim1 = *lde;
- e_offset = 1 + e_dim1 * 1;
- e -= e_offset;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1 * 1;
- f -= f_offset;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
- notran = lsame_(trans, "N");
- lquery = *lwork == -1;
-
- if (! notran && ! lsame_(trans, "T")) {
- *info = -1;
- } else if (notran) {
- if (*ijob < 0 || *ijob > 4) {
- *info = -2;
- }
- }
- if (*info == 0) {
- if (*m <= 0) {
- *info = -3;
- } else if (*n <= 0) {
- *info = -4;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -6;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -8;
- } else if (*ldc < f2cmax(1,*m)) {
- *info = -10;
- } else if (*ldd < f2cmax(1,*m)) {
- *info = -12;
- } else if (*lde < f2cmax(1,*n)) {
- *info = -14;
- } else if (*ldf < f2cmax(1,*m)) {
- *info = -16;
- }
- }
-
- if (*info == 0) {
- if (notran) {
- if (*ijob == 1 || *ijob == 2) {
- /* Computing MAX */
- i__1 = 1, i__2 = (*m << 1) * *n;
- lwmin = f2cmax(i__1,i__2);
- } else {
- lwmin = 1;
- }
- } else {
- lwmin = 1;
- }
- work[1] = (doublereal) lwmin;
-
- if (*lwork < lwmin && ! lquery) {
- *info = -20;
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTGSYL", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- *scale = 1.;
- if (notran) {
- if (*ijob != 0) {
- *dif = 0.;
- }
- }
- return;
- }
-
- /* Determine optimal block sizes MB and NB */
-
- mb = ilaenv_(&c__2, "DTGSYL", trans, m, n, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
- nb = ilaenv_(&c__5, "DTGSYL", trans, m, n, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)1);
-
- isolve = 1;
- ifunc = 0;
- if (notran) {
- if (*ijob >= 3) {
- ifunc = *ijob - 2;
- dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc)
- ;
- dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
- } else if (*ijob >= 1) {
- isolve = 2;
- }
- }
-
- if (mb <= 1 && nb <= 1 || mb >= *m && nb >= *n) {
-
- i__1 = isolve;
- for (iround = 1; iround <= i__1; ++iround) {
-
- /* Use unblocked Level 2 solver */
-
- dscale = 0.;
- dsum = 1.;
- pq = 0;
- dtgsy2_(trans, &ifunc, m, n, &a[a_offset], lda, &b[b_offset], ldb,
- &c__[c_offset], ldc, &d__[d_offset], ldd, &e[e_offset],
- lde, &f[f_offset], ldf, scale, &dsum, &dscale, &iwork[1],
- &pq, info);
- if (dscale != 0.) {
- if (*ijob == 1 || *ijob == 3) {
- *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale *
- sqrt(dsum));
- } else {
- *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
- }
- }
-
- if (isolve == 2 && iround == 1) {
- if (notran) {
- ifunc = *ijob;
- }
- scale2 = *scale;
- dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
- dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
- dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
- dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
- } else if (isolve == 2 && iround == 2) {
- dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
- dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
- *scale = scale2;
- }
- /* L30: */
- }
-
- return;
- }
-
- /* Determine block structure of A */
-
- p = 0;
- i__ = 1;
- L40:
- if (i__ > *m) {
- goto L50;
- }
- ++p;
- iwork[p] = i__;
- i__ += mb;
- if (i__ >= *m) {
- goto L50;
- }
- if (a[i__ + (i__ - 1) * a_dim1] != 0.) {
- ++i__;
- }
- goto L40;
- L50:
-
- iwork[p + 1] = *m + 1;
- if (iwork[p] == iwork[p + 1]) {
- --p;
- }
-
- /* Determine block structure of B */
-
- q = p + 1;
- j = 1;
- L60:
- if (j > *n) {
- goto L70;
- }
- ++q;
- iwork[q] = j;
- j += nb;
- if (j >= *n) {
- goto L70;
- }
- if (b[j + (j - 1) * b_dim1] != 0.) {
- ++j;
- }
- goto L60;
- L70:
-
- iwork[q + 1] = *n + 1;
- if (iwork[q] == iwork[q + 1]) {
- --q;
- }
-
- if (notran) {
-
- i__1 = isolve;
- for (iround = 1; iround <= i__1; ++iround) {
-
- /* Solve (I, J)-subsystem */
- /* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
- /* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
- /* for I = P, P - 1,..., 1; J = 1, 2,..., Q */
-
- dscale = 0.;
- dsum = 1.;
- pq = 0;
- *scale = 1.;
- i__2 = q;
- for (j = p + 2; j <= i__2; ++j) {
- js = iwork[j];
- je = iwork[j + 1] - 1;
- nb = je - js + 1;
- for (i__ = p; i__ >= 1; --i__) {
- is = iwork[i__];
- ie = iwork[i__ + 1] - 1;
- mb = ie - is + 1;
- ppqq = 0;
- dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1],
- lda, &b[js + js * b_dim1], ldb, &c__[is + js *
- c_dim1], ldc, &d__[is + is * d_dim1], ldd, &e[js
- + js * e_dim1], lde, &f[is + js * f_dim1], ldf, &
- scaloc, &dsum, &dscale, &iwork[q + 2], &ppqq, &
- linfo);
- if (linfo > 0) {
- *info = linfo;
- }
-
- pq += ppqq;
- if (scaloc != 1.) {
- i__3 = js - 1;
- for (k = 1; k <= i__3; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L80: */
- }
- i__3 = je;
- for (k = js; k <= i__3; ++k) {
- i__4 = is - 1;
- dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &
- c__1);
- i__4 = is - 1;
- dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L90: */
- }
- i__3 = je;
- for (k = js; k <= i__3; ++k) {
- i__4 = *m - ie;
- dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1],
- &c__1);
- i__4 = *m - ie;
- dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &
- c__1);
- /* L100: */
- }
- i__3 = *n;
- for (k = je + 1; k <= i__3; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L110: */
- }
- *scale *= scaloc;
- }
-
- /* Substitute R(I, J) and L(I, J) into remaining */
- /* equation. */
-
- if (i__ > 1) {
- i__3 = is - 1;
- dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &a[is *
- a_dim1 + 1], lda, &c__[is + js * c_dim1], ldc,
- &c_b52, &c__[js * c_dim1 + 1], ldc);
- i__3 = is - 1;
- dgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &d__[is *
- d_dim1 + 1], ldd, &c__[is + js * c_dim1], ldc,
- &c_b52, &f[js * f_dim1 + 1], ldf);
- }
- if (j < q) {
- i__3 = *n - je;
- dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
- f_dim1], ldf, &b[js + (je + 1) * b_dim1],
- ldb, &c_b52, &c__[is + (je + 1) * c_dim1],
- ldc);
- i__3 = *n - je;
- dgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
- f_dim1], ldf, &e[js + (je + 1) * e_dim1],
- lde, &c_b52, &f[is + (je + 1) * f_dim1], ldf);
- }
- /* L120: */
- }
- /* L130: */
- }
- if (dscale != 0.) {
- if (*ijob == 1 || *ijob == 3) {
- *dif = sqrt((doublereal) ((*m << 1) * *n)) / (dscale *
- sqrt(dsum));
- } else {
- *dif = sqrt((doublereal) pq) / (dscale * sqrt(dsum));
- }
- }
- if (isolve == 2 && iround == 1) {
- if (notran) {
- ifunc = *ijob;
- }
- scale2 = *scale;
- dlacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
- dlacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
- dlaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
- dlaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
- } else if (isolve == 2 && iround == 2) {
- dlacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
- dlacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
- *scale = scale2;
- }
- /* L150: */
- }
-
- } else {
-
- /* Solve transposed (I, J)-subsystem */
- /* A(I, I)**T * R(I, J) + D(I, I)**T * L(I, J) = C(I, J) */
- /* R(I, J) * B(J, J)**T + L(I, J) * E(J, J)**T = -F(I, J) */
- /* for I = 1,2,..., P; J = Q, Q-1,..., 1 */
-
- *scale = 1.;
- i__1 = p;
- for (i__ = 1; i__ <= i__1; ++i__) {
- is = iwork[i__];
- ie = iwork[i__ + 1] - 1;
- mb = ie - is + 1;
- i__2 = p + 2;
- for (j = q; j >= i__2; --j) {
- js = iwork[j];
- je = iwork[j + 1] - 1;
- nb = je - js + 1;
- dtgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], lda, &
- b[js + js * b_dim1], ldb, &c__[is + js * c_dim1], ldc,
- &d__[is + is * d_dim1], ldd, &e[js + js * e_dim1],
- lde, &f[is + js * f_dim1], ldf, &scaloc, &dsum, &
- dscale, &iwork[q + 2], &ppqq, &linfo);
- if (linfo > 0) {
- *info = linfo;
- }
- if (scaloc != 1.) {
- i__3 = js - 1;
- for (k = 1; k <= i__3; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L160: */
- }
- i__3 = je;
- for (k = js; k <= i__3; ++k) {
- i__4 = is - 1;
- dscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- i__4 = is - 1;
- dscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L170: */
- }
- i__3 = je;
- for (k = js; k <= i__3; ++k) {
- i__4 = *m - ie;
- dscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], &
- c__1);
- i__4 = *m - ie;
- dscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &c__1)
- ;
- /* L180: */
- }
- i__3 = *n;
- for (k = je + 1; k <= i__3; ++k) {
- dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
- dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
- /* L190: */
- }
- *scale *= scaloc;
- }
-
- /* Substitute R(I, J) and L(I, J) into remaining equation. */
-
- if (j > p + 2) {
- i__3 = js - 1;
- dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &c__[is + js *
- c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &c_b52, &
- f[is + f_dim1], ldf);
- i__3 = js - 1;
- dgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &f[is + js *
- f_dim1], ldf, &e[js * e_dim1 + 1], lde, &c_b52, &
- f[is + f_dim1], ldf);
- }
- if (i__ < p) {
- i__3 = *m - ie;
- dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &a[is + (ie + 1)
- * a_dim1], lda, &c__[is + js * c_dim1], ldc, &
- c_b52, &c__[ie + 1 + js * c_dim1], ldc);
- i__3 = *m - ie;
- dgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &d__[is + (ie +
- 1) * d_dim1], ldd, &f[is + js * f_dim1], ldf, &
- c_b52, &c__[ie + 1 + js * c_dim1], ldc);
- }
- /* L200: */
- }
- /* L210: */
- }
-
- }
-
- work[1] = (doublereal) lwmin;
-
- return;
-
- /* End of DTGSYL */
-
- } /* dtgsyl_ */
|