|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static logical c_true = TRUE_;
- static integer c__2 = 2;
- static doublereal c_b34 = 1.;
- static integer c__1 = 1;
- static doublereal c_b36 = 0.;
- static logical c_false = FALSE_;
-
- /* > \brief \b DTGEVC */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DTGEVC + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgevc.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgevc.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgevc.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL, */
- /* LDVL, VR, LDVR, MM, M, WORK, INFO ) */
-
- /* CHARACTER HOWMNY, SIDE */
- /* INTEGER INFO, LDP, LDS, LDVL, LDVR, M, MM, N */
- /* LOGICAL SELECT( * ) */
- /* DOUBLE PRECISION P( LDP, * ), S( LDS, * ), VL( LDVL, * ), */
- /* $ VR( LDVR, * ), WORK( * ) */
-
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DTGEVC computes some or all of the right and/or left eigenvectors of */
- /* > a pair of real matrices (S,P), where S is a quasi-triangular matrix */
- /* > and P is upper triangular. Matrix pairs of this type are produced by */
- /* > the generalized Schur factorization of a matrix pair (A,B): */
- /* > */
- /* > A = Q*S*Z**T, B = Q*P*Z**T */
- /* > */
- /* > as computed by DGGHRD + DHGEQZ. */
- /* > */
- /* > The right eigenvector x and the left eigenvector y of (S,P) */
- /* > corresponding to an eigenvalue w are defined by: */
- /* > */
- /* > S*x = w*P*x, (y**H)*S = w*(y**H)*P, */
- /* > */
- /* > where y**H denotes the conjugate tranpose of y. */
- /* > The eigenvalues are not input to this routine, but are computed */
- /* > directly from the diagonal blocks of S and P. */
- /* > */
- /* > This routine returns the matrices X and/or Y of right and left */
- /* > eigenvectors of (S,P), or the products Z*X and/or Q*Y, */
- /* > where Z and Q are input matrices. */
- /* > If Q and Z are the orthogonal factors from the generalized Schur */
- /* > factorization of a matrix pair (A,B), then Z*X and Q*Y */
- /* > are the matrices of right and left eigenvectors of (A,B). */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] SIDE */
- /* > \verbatim */
- /* > SIDE is CHARACTER*1 */
- /* > = 'R': compute right eigenvectors only; */
- /* > = 'L': compute left eigenvectors only; */
- /* > = 'B': compute both right and left eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] HOWMNY */
- /* > \verbatim */
- /* > HOWMNY is CHARACTER*1 */
- /* > = 'A': compute all right and/or left eigenvectors; */
- /* > = 'B': compute all right and/or left eigenvectors, */
- /* > backtransformed by the matrices in VR and/or VL; */
- /* > = 'S': compute selected right and/or left eigenvectors, */
- /* > specified by the logical array SELECT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > If HOWMNY='S', SELECT specifies the eigenvectors to be */
- /* > computed. If w(j) is a real eigenvalue, the corresponding */
- /* > real eigenvector is computed if SELECT(j) is .TRUE.. */
- /* > If w(j) and w(j+1) are the real and imaginary parts of a */
- /* > complex eigenvalue, the corresponding complex eigenvector */
- /* > is computed if either SELECT(j) or SELECT(j+1) is .TRUE., */
- /* > and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is */
- /* > set to .FALSE.. */
- /* > Not referenced if HOWMNY = 'A' or 'B'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices S and P. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] S */
- /* > \verbatim */
- /* > S is DOUBLE PRECISION array, dimension (LDS,N) */
- /* > The upper quasi-triangular matrix S from a generalized Schur */
- /* > factorization, as computed by DHGEQZ. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDS */
- /* > \verbatim */
- /* > LDS is INTEGER */
- /* > The leading dimension of array S. LDS >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] P */
- /* > \verbatim */
- /* > P is DOUBLE PRECISION array, dimension (LDP,N) */
- /* > The upper triangular matrix P from a generalized Schur */
- /* > factorization, as computed by DHGEQZ. */
- /* > 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks */
- /* > of S must be in positive diagonal form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDP */
- /* > \verbatim */
- /* > LDP is INTEGER */
- /* > The leading dimension of array P. LDP >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VL */
- /* > \verbatim */
- /* > VL is DOUBLE PRECISION array, dimension (LDVL,MM) */
- /* > On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
- /* > contain an N-by-N matrix Q (usually the orthogonal matrix Q */
- /* > of left Schur vectors returned by DHGEQZ). */
- /* > On exit, if SIDE = 'L' or 'B', VL contains: */
- /* > if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); */
- /* > if HOWMNY = 'B', the matrix Q*Y; */
- /* > if HOWMNY = 'S', the left eigenvectors of (S,P) specified by */
- /* > SELECT, stored consecutively in the columns of */
- /* > VL, in the same order as their eigenvalues. */
- /* > */
- /* > A complex eigenvector corresponding to a complex eigenvalue */
- /* > is stored in two consecutive columns, the first holding the */
- /* > real part, and the second the imaginary part. */
- /* > */
- /* > Not referenced if SIDE = 'R'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of array VL. LDVL >= 1, and if */
- /* > SIDE = 'L' or 'B', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VR */
- /* > \verbatim */
- /* > VR is DOUBLE PRECISION array, dimension (LDVR,MM) */
- /* > On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
- /* > contain an N-by-N matrix Z (usually the orthogonal matrix Z */
- /* > of right Schur vectors returned by DHGEQZ). */
- /* > */
- /* > On exit, if SIDE = 'R' or 'B', VR contains: */
- /* > if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); */
- /* > if HOWMNY = 'B' or 'b', the matrix Z*X; */
- /* > if HOWMNY = 'S' or 's', the right eigenvectors of (S,P) */
- /* > specified by SELECT, stored consecutively in the */
- /* > columns of VR, in the same order as their */
- /* > eigenvalues. */
- /* > */
- /* > A complex eigenvector corresponding to a complex eigenvalue */
- /* > is stored in two consecutive columns, the first holding the */
- /* > real part and the second the imaginary part. */
- /* > */
- /* > Not referenced if SIDE = 'L'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the array VR. LDVR >= 1, and if */
- /* > SIDE = 'R' or 'B', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MM */
- /* > \verbatim */
- /* > MM is INTEGER */
- /* > The number of columns in the arrays VL and/or VR. MM >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of columns in the arrays VL and/or VR actually */
- /* > used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */
- /* > is set to N. Each selected real eigenvector occupies one */
- /* > column and each selected complex eigenvector occupies two */
- /* > columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (6*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex */
- /* > eigenvalue. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup doubleGEcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Allocation of workspace: */
- /* > ---------- -- --------- */
- /* > */
- /* > WORK( j ) = 1-norm of j-th column of A, above the diagonal */
- /* > WORK( N+j ) = 1-norm of j-th column of B, above the diagonal */
- /* > WORK( 2*N+1:3*N ) = real part of eigenvector */
- /* > WORK( 3*N+1:4*N ) = imaginary part of eigenvector */
- /* > WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector */
- /* > WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector */
- /* > */
- /* > Rowwise vs. columnwise solution methods: */
- /* > ------- -- ---------- -------- ------- */
- /* > */
- /* > Finding a generalized eigenvector consists basically of solving the */
- /* > singular triangular system */
- /* > */
- /* > (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left) */
- /* > */
- /* > Consider finding the i-th right eigenvector (assume all eigenvalues */
- /* > are real). The equation to be solved is: */
- /* > n i */
- /* > 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1 */
- /* > k=j k=j */
- /* > */
- /* > where C = (A - w B) (The components v(i+1:n) are 0.) */
- /* > */
- /* > The "rowwise" method is: */
- /* > */
- /* > (1) v(i) := 1 */
- /* > for j = i-1,. . .,1: */
- /* > i */
- /* > (2) compute s = - sum C(j,k) v(k) and */
- /* > k=j+1 */
- /* > */
- /* > (3) v(j) := s / C(j,j) */
- /* > */
- /* > Step 2 is sometimes called the "dot product" step, since it is an */
- /* > inner product between the j-th row and the portion of the eigenvector */
- /* > that has been computed so far. */
- /* > */
- /* > The "columnwise" method consists basically in doing the sums */
- /* > for all the rows in parallel. As each v(j) is computed, the */
- /* > contribution of v(j) times the j-th column of C is added to the */
- /* > partial sums. Since FORTRAN arrays are stored columnwise, this has */
- /* > the advantage that at each step, the elements of C that are accessed */
- /* > are adjacent to one another, whereas with the rowwise method, the */
- /* > elements accessed at a step are spaced LDS (and LDP) words apart. */
- /* > */
- /* > When finding left eigenvectors, the matrix in question is the */
- /* > transpose of the one in storage, so the rowwise method then */
- /* > actually accesses columns of A and B at each step, and so is the */
- /* > preferred method. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dtgevc_(char *side, char *howmny, logical *select,
- integer *n, doublereal *s, integer *lds, doublereal *p, integer *ldp,
- doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr, integer
- *mm, integer *m, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1,
- vr_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3, d__4, d__5, d__6;
-
- /* Local variables */
- integer ibeg, ieig, iend;
- doublereal dmin__, temp, xmax, sump[4] /* was [2][2] */, sums[4]
- /* was [2][2] */;
- extern /* Subroutine */ void dlag2_(doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *);
- doublereal cim2a, cim2b, cre2a, cre2b, temp2, bdiag[2];
- integer i__, j;
- doublereal acoef, scale;
- logical ilall;
- integer iside;
- doublereal sbeta;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- logical il2by2;
- integer iinfo;
- doublereal small;
- logical compl;
- doublereal anorm, bnorm;
- logical compr;
- extern /* Subroutine */ void dlaln2_(logical *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *
- , doublereal *, integer *, doublereal *, doublereal *, integer *);
- doublereal temp2i;
- extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
- doublereal temp2r;
- integer ja;
- logical ilabad, ilbbad;
- integer jc, je, na;
- doublereal acoefa, bcoefa, cimaga, cimagb;
- logical ilback;
- integer im;
- doublereal bcoefi, ascale, bscale, creala;
- integer jr;
- doublereal crealb;
- extern doublereal dlamch_(char *);
- doublereal bcoefr;
- integer jw, nw;
- doublereal salfar, safmin;
- extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- doublereal xscale, bignum;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- logical ilcomp, ilcplx;
- integer ihwmny;
- doublereal big;
- logical lsa, lsb;
- doublereal ulp, sum[4] /* was [2][2] */;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
-
- /* ===================================================================== */
-
-
- /* Decode and Test the input parameters */
-
- /* Parameter adjustments */
- --select;
- s_dim1 = *lds;
- s_offset = 1 + s_dim1 * 1;
- s -= s_offset;
- p_dim1 = *ldp;
- p_offset = 1 + p_dim1 * 1;
- p -= p_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
-
- /* Function Body */
- if (lsame_(howmny, "A")) {
- ihwmny = 1;
- ilall = TRUE_;
- ilback = FALSE_;
- } else if (lsame_(howmny, "S")) {
- ihwmny = 2;
- ilall = FALSE_;
- ilback = FALSE_;
- } else if (lsame_(howmny, "B")) {
- ihwmny = 3;
- ilall = TRUE_;
- ilback = TRUE_;
- } else {
- ihwmny = -1;
- ilall = TRUE_;
- }
-
- if (lsame_(side, "R")) {
- iside = 1;
- compl = FALSE_;
- compr = TRUE_;
- } else if (lsame_(side, "L")) {
- iside = 2;
- compl = TRUE_;
- compr = FALSE_;
- } else if (lsame_(side, "B")) {
- iside = 3;
- compl = TRUE_;
- compr = TRUE_;
- } else {
- iside = -1;
- }
-
- *info = 0;
- if (iside < 0) {
- *info = -1;
- } else if (ihwmny < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*lds < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldp < f2cmax(1,*n)) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTGEVC", &i__1, (ftnlen)6);
- return;
- }
-
- /* Count the number of eigenvectors to be computed */
-
- if (! ilall) {
- im = 0;
- ilcplx = FALSE_;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (ilcplx) {
- ilcplx = FALSE_;
- goto L10;
- }
- if (j < *n) {
- if (s[j + 1 + j * s_dim1] != 0.) {
- ilcplx = TRUE_;
- }
- }
- if (ilcplx) {
- if (select[j] || select[j + 1]) {
- im += 2;
- }
- } else {
- if (select[j]) {
- ++im;
- }
- }
- L10:
- ;
- }
- } else {
- im = *n;
- }
-
- /* Check 2-by-2 diagonal blocks of A, B */
-
- ilabad = FALSE_;
- ilbbad = FALSE_;
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- if (s[j + 1 + j * s_dim1] != 0.) {
- if (p[j + j * p_dim1] == 0. || p[j + 1 + (j + 1) * p_dim1] == 0.
- || p[j + (j + 1) * p_dim1] != 0.) {
- ilbbad = TRUE_;
- }
- if (j < *n - 1) {
- if (s[j + 2 + (j + 1) * s_dim1] != 0.) {
- ilabad = TRUE_;
- }
- }
- }
- /* L20: */
- }
-
- if (ilabad) {
- *info = -5;
- } else if (ilbbad) {
- *info = -7;
- } else if (compl && *ldvl < *n || *ldvl < 1) {
- *info = -10;
- } else if (compr && *ldvr < *n || *ldvr < 1) {
- *info = -12;
- } else if (*mm < im) {
- *info = -13;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTGEVC", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- *m = im;
- if (*n == 0) {
- return;
- }
-
- /* Machine Constants */
-
- safmin = dlamch_("Safe minimum");
- big = 1. / safmin;
- dlabad_(&safmin, &big);
- ulp = dlamch_("Epsilon") * dlamch_("Base");
- small = safmin * *n / ulp;
- big = 1. / small;
- bignum = 1. / (safmin * *n);
-
- /* Compute the 1-norm of each column of the strictly upper triangular */
- /* part (i.e., excluding all elements belonging to the diagonal */
- /* blocks) of A and B to check for possible overflow in the */
- /* triangular solver. */
-
- anorm = (d__1 = s[s_dim1 + 1], abs(d__1));
- if (*n > 1) {
- anorm += (d__1 = s[s_dim1 + 2], abs(d__1));
- }
- bnorm = (d__1 = p[p_dim1 + 1], abs(d__1));
- work[1] = 0.;
- work[*n + 1] = 0.;
-
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- temp = 0.;
- temp2 = 0.;
- if (s[j + (j - 1) * s_dim1] == 0.) {
- iend = j - 1;
- } else {
- iend = j - 2;
- }
- i__2 = iend;
- for (i__ = 1; i__ <= i__2; ++i__) {
- temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));
- temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));
- /* L30: */
- }
- work[j] = temp;
- work[*n + j] = temp2;
- /* Computing MIN */
- i__3 = j + 1;
- i__2 = f2cmin(i__3,*n);
- for (i__ = iend + 1; i__ <= i__2; ++i__) {
- temp += (d__1 = s[i__ + j * s_dim1], abs(d__1));
- temp2 += (d__1 = p[i__ + j * p_dim1], abs(d__1));
- /* L40: */
- }
- anorm = f2cmax(anorm,temp);
- bnorm = f2cmax(bnorm,temp2);
- /* L50: */
- }
-
- ascale = 1. / f2cmax(anorm,safmin);
- bscale = 1. / f2cmax(bnorm,safmin);
-
- /* Left eigenvectors */
-
- if (compl) {
- ieig = 0;
-
- /* Main loop over eigenvalues */
-
- ilcplx = FALSE_;
- i__1 = *n;
- for (je = 1; je <= i__1; ++je) {
-
- /* Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or */
- /* (b) this would be the second of a complex pair. */
- /* Check for complex eigenvalue, so as to be sure of which */
- /* entry(-ies) of SELECT to look at. */
-
- if (ilcplx) {
- ilcplx = FALSE_;
- goto L220;
- }
- nw = 1;
- if (je < *n) {
- if (s[je + 1 + je * s_dim1] != 0.) {
- ilcplx = TRUE_;
- nw = 2;
- }
- }
- if (ilall) {
- ilcomp = TRUE_;
- } else if (ilcplx) {
- ilcomp = select[je] || select[je + 1];
- } else {
- ilcomp = select[je];
- }
- if (! ilcomp) {
- goto L220;
- }
-
- /* Decide if (a) singular pencil, (b) real eigenvalue, or */
- /* (c) complex eigenvalue. */
-
- if (! ilcplx) {
- if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (
- d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {
-
- /* Singular matrix pencil -- return unit eigenvector */
-
- ++ieig;
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vl[jr + ieig * vl_dim1] = 0.;
- /* L60: */
- }
- vl[ieig + ieig * vl_dim1] = 1.;
- goto L220;
- }
- }
-
- /* Clear vector */
-
- i__2 = nw * *n;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(*n << 1) + jr] = 0.;
- /* L70: */
- }
- /* T */
- /* Compute coefficients in ( a A - b B ) y = 0 */
- /* a is ACOEF */
- /* b is BCOEFR + i*BCOEFI */
-
- if (! ilcplx) {
-
- /* Real eigenvalue */
-
- /* Computing MAX */
- d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4
- = (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale,
- d__3 = f2cmax(d__3,d__4);
- temp = 1. / f2cmax(d__3,safmin);
- salfar = temp * s[je + je * s_dim1] * ascale;
- sbeta = temp * p[je + je * p_dim1] * bscale;
- acoef = sbeta * ascale;
- bcoefr = salfar * bscale;
- bcoefi = 0.;
-
- /* Scale to avoid underflow */
-
- scale = 1.;
- lsa = abs(sbeta) >= safmin && abs(acoef) < small;
- lsb = abs(salfar) >= safmin && abs(bcoefr) < small;
- if (lsa) {
- scale = small / abs(sbeta) * f2cmin(anorm,big);
- }
- if (lsb) {
- /* Computing MAX */
- d__1 = scale, d__2 = small / abs(salfar) * f2cmin(bnorm,big);
- scale = f2cmax(d__1,d__2);
- }
- if (lsa || lsb) {
- /* Computing MIN */
- /* Computing MAX */
- d__3 = 1., d__4 = abs(acoef), d__3 = f2cmax(d__3,d__4), d__4
- = abs(bcoefr);
- d__1 = scale, d__2 = 1. / (safmin * f2cmax(d__3,d__4));
- scale = f2cmin(d__1,d__2);
- if (lsa) {
- acoef = ascale * (scale * sbeta);
- } else {
- acoef = scale * acoef;
- }
- if (lsb) {
- bcoefr = bscale * (scale * salfar);
- } else {
- bcoefr = scale * bcoefr;
- }
- }
- acoefa = abs(acoef);
- bcoefa = abs(bcoefr);
-
- /* First component is 1 */
-
- work[(*n << 1) + je] = 1.;
- xmax = 1.;
- } else {
-
- /* Complex eigenvalue */
-
- d__1 = safmin * 100.;
- dlag2_(&s[je + je * s_dim1], lds, &p[je + je * p_dim1], ldp, &
- d__1, &acoef, &temp, &bcoefr, &temp2, &bcoefi);
- bcoefi = -bcoefi;
- if (bcoefi == 0.) {
- *info = je;
- return;
- }
-
- /* Scale to avoid over/underflow */
-
- acoefa = abs(acoef);
- bcoefa = abs(bcoefr) + abs(bcoefi);
- scale = 1.;
- if (acoefa * ulp < safmin && acoefa >= safmin) {
- scale = safmin / ulp / acoefa;
- }
- if (bcoefa * ulp < safmin && bcoefa >= safmin) {
- /* Computing MAX */
- d__1 = scale, d__2 = safmin / ulp / bcoefa;
- scale = f2cmax(d__1,d__2);
- }
- if (safmin * acoefa > ascale) {
- scale = ascale / (safmin * acoefa);
- }
- if (safmin * bcoefa > bscale) {
- /* Computing MIN */
- d__1 = scale, d__2 = bscale / (safmin * bcoefa);
- scale = f2cmin(d__1,d__2);
- }
- if (scale != 1.) {
- acoef = scale * acoef;
- acoefa = abs(acoef);
- bcoefr = scale * bcoefr;
- bcoefi = scale * bcoefi;
- bcoefa = abs(bcoefr) + abs(bcoefi);
- }
-
- /* Compute first two components of eigenvector */
-
- temp = acoef * s[je + 1 + je * s_dim1];
- temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je *
- p_dim1];
- temp2i = -bcoefi * p[je + je * p_dim1];
- if (abs(temp) > abs(temp2r) + abs(temp2i)) {
- work[(*n << 1) + je] = 1.;
- work[*n * 3 + je] = 0.;
- work[(*n << 1) + je + 1] = -temp2r / temp;
- work[*n * 3 + je + 1] = -temp2i / temp;
- } else {
- work[(*n << 1) + je + 1] = 1.;
- work[*n * 3 + je + 1] = 0.;
- temp = acoef * s[je + (je + 1) * s_dim1];
- work[(*n << 1) + je] = (bcoefr * p[je + 1 + (je + 1) *
- p_dim1] - acoef * s[je + 1 + (je + 1) * s_dim1]) /
- temp;
- work[*n * 3 + je] = bcoefi * p[je + 1 + (je + 1) * p_dim1]
- / temp;
- }
- /* Computing MAX */
- d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 =
- work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*
- n << 1) + je + 1], abs(d__3)) + (d__4 = work[*n * 3 +
- je + 1], abs(d__4));
- xmax = f2cmax(d__5,d__6);
- }
-
- /* Computing MAX */
- d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 =
- f2cmax(d__1,d__2);
- dmin__ = f2cmax(d__1,safmin);
-
- /* T */
- /* Triangular solve of (a A - b B) y = 0 */
-
- /* T */
- /* (rowwise in (a A - b B) , or columnwise in (a A - b B) ) */
-
- il2by2 = FALSE_;
-
- i__2 = *n;
- for (j = je + nw; j <= i__2; ++j) {
- if (il2by2) {
- il2by2 = FALSE_;
- goto L160;
- }
-
- na = 1;
- bdiag[0] = p[j + j * p_dim1];
- if (j < *n) {
- if (s[j + 1 + j * s_dim1] != 0.) {
- il2by2 = TRUE_;
- bdiag[1] = p[j + 1 + (j + 1) * p_dim1];
- na = 2;
- }
- }
-
- /* Check whether scaling is necessary for dot products */
-
- xscale = 1. / f2cmax(1.,xmax);
- /* Computing MAX */
- d__1 = work[j], d__2 = work[*n + j], d__1 = f2cmax(d__1,d__2),
- d__2 = acoefa * work[j] + bcoefa * work[*n + j];
- temp = f2cmax(d__1,d__2);
- if (il2by2) {
- /* Computing MAX */
- d__1 = temp, d__2 = work[j + 1], d__1 = f2cmax(d__1,d__2),
- d__2 = work[*n + j + 1], d__1 = f2cmax(d__1,d__2),
- d__2 = acoefa * work[j + 1] + bcoefa * work[*n +
- j + 1];
- temp = f2cmax(d__1,d__2);
- }
- if (temp > bignum * xscale) {
- i__3 = nw - 1;
- for (jw = 0; jw <= i__3; ++jw) {
- i__4 = j - 1;
- for (jr = je; jr <= i__4; ++jr) {
- work[(jw + 2) * *n + jr] = xscale * work[(jw + 2)
- * *n + jr];
- /* L80: */
- }
- /* L90: */
- }
- xmax *= xscale;
- }
-
- /* Compute dot products */
-
- /* j-1 */
- /* SUM = sum conjg( a*S(k,j) - b*P(k,j) )*x(k) */
- /* k=je */
-
- /* To reduce the op count, this is done as */
-
- /* _ j-1 _ j-1 */
- /* a*conjg( sum S(k,j)*x(k) ) - b*conjg( sum P(k,j)*x(k) ) */
- /* k=je k=je */
-
- /* which may cause underflow problems if A or B are close */
- /* to underflow. (E.g., less than SMALL.) */
-
-
- i__3 = nw;
- for (jw = 1; jw <= i__3; ++jw) {
- i__4 = na;
- for (ja = 1; ja <= i__4; ++ja) {
- sums[ja + (jw << 1) - 3] = 0.;
- sump[ja + (jw << 1) - 3] = 0.;
-
- i__5 = j - 1;
- for (jr = je; jr <= i__5; ++jr) {
- sums[ja + (jw << 1) - 3] += s[jr + (j + ja - 1) *
- s_dim1] * work[(jw + 1) * *n + jr];
- sump[ja + (jw << 1) - 3] += p[jr + (j + ja - 1) *
- p_dim1] * work[(jw + 1) * *n + jr];
- /* L100: */
- }
- /* L110: */
- }
- /* L120: */
- }
-
- i__3 = na;
- for (ja = 1; ja <= i__3; ++ja) {
- if (ilcplx) {
- sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[
- ja - 1] - bcoefi * sump[ja + 1];
- sum[ja + 1] = -acoef * sums[ja + 1] + bcoefr * sump[
- ja + 1] + bcoefi * sump[ja - 1];
- } else {
- sum[ja - 1] = -acoef * sums[ja - 1] + bcoefr * sump[
- ja - 1];
- }
- /* L130: */
- }
-
- /* T */
- /* Solve ( a A - b B ) y = SUM(,) */
- /* with scaling and perturbation of the denominator */
-
- dlaln2_(&c_true, &na, &nw, &dmin__, &acoef, &s[j + j * s_dim1]
- , lds, bdiag, &bdiag[1], sum, &c__2, &bcoefr, &bcoefi,
- &work[(*n << 1) + j], n, &scale, &temp, &iinfo);
- if (scale < 1.) {
- i__3 = nw - 1;
- for (jw = 0; jw <= i__3; ++jw) {
- i__4 = j - 1;
- for (jr = je; jr <= i__4; ++jr) {
- work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
- *n + jr];
- /* L140: */
- }
- /* L150: */
- }
- xmax = scale * xmax;
- }
- xmax = f2cmax(xmax,temp);
- L160:
- ;
- }
-
- /* Copy eigenvector to VL, back transforming if */
- /* HOWMNY='B'. */
-
- ++ieig;
- if (ilback) {
- i__2 = nw - 1;
- for (jw = 0; jw <= i__2; ++jw) {
- i__3 = *n + 1 - je;
- dgemv_("N", n, &i__3, &c_b34, &vl[je * vl_dim1 + 1], ldvl,
- &work[(jw + 2) * *n + je], &c__1, &c_b36, &work[(
- jw + 4) * *n + 1], &c__1);
- /* L170: */
- }
- dlacpy_(" ", n, &nw, &work[(*n << 2) + 1], n, &vl[je *
- vl_dim1 + 1], ldvl);
- ibeg = 1;
- } else {
- dlacpy_(" ", n, &nw, &work[(*n << 1) + 1], n, &vl[ieig *
- vl_dim1 + 1], ldvl);
- ibeg = je;
- }
-
- /* Scale eigenvector */
-
- xmax = 0.;
- if (ilcplx) {
- i__2 = *n;
- for (j = ibeg; j <= i__2; ++j) {
- /* Computing MAX */
- d__3 = xmax, d__4 = (d__1 = vl[j + ieig * vl_dim1], abs(
- d__1)) + (d__2 = vl[j + (ieig + 1) * vl_dim1],
- abs(d__2));
- xmax = f2cmax(d__3,d__4);
- /* L180: */
- }
- } else {
- i__2 = *n;
- for (j = ibeg; j <= i__2; ++j) {
- /* Computing MAX */
- d__2 = xmax, d__3 = (d__1 = vl[j + ieig * vl_dim1], abs(
- d__1));
- xmax = f2cmax(d__2,d__3);
- /* L190: */
- }
- }
-
- if (xmax > safmin) {
- xscale = 1. / xmax;
-
- i__2 = nw - 1;
- for (jw = 0; jw <= i__2; ++jw) {
- i__3 = *n;
- for (jr = ibeg; jr <= i__3; ++jr) {
- vl[jr + (ieig + jw) * vl_dim1] = xscale * vl[jr + (
- ieig + jw) * vl_dim1];
- /* L200: */
- }
- /* L210: */
- }
- }
- ieig = ieig + nw - 1;
-
- L220:
- ;
- }
- }
-
- /* Right eigenvectors */
-
- if (compr) {
- ieig = im + 1;
-
- /* Main loop over eigenvalues */
-
- ilcplx = FALSE_;
- for (je = *n; je >= 1; --je) {
-
- /* Skip this iteration if (a) HOWMNY='S' and SELECT=.FALSE., or */
- /* (b) this would be the second of a complex pair. */
- /* Check for complex eigenvalue, so as to be sure of which */
- /* entry(-ies) of SELECT to look at -- if complex, SELECT(JE) */
- /* or SELECT(JE-1). */
- /* If this is a complex pair, the 2-by-2 diagonal block */
- /* corresponding to the eigenvalue is in rows/columns JE-1:JE */
-
- if (ilcplx) {
- ilcplx = FALSE_;
- goto L500;
- }
- nw = 1;
- if (je > 1) {
- if (s[je + (je - 1) * s_dim1] != 0.) {
- ilcplx = TRUE_;
- nw = 2;
- }
- }
- if (ilall) {
- ilcomp = TRUE_;
- } else if (ilcplx) {
- ilcomp = select[je] || select[je - 1];
- } else {
- ilcomp = select[je];
- }
- if (! ilcomp) {
- goto L500;
- }
-
- /* Decide if (a) singular pencil, (b) real eigenvalue, or */
- /* (c) complex eigenvalue. */
-
- if (! ilcplx) {
- if ((d__1 = s[je + je * s_dim1], abs(d__1)) <= safmin && (
- d__2 = p[je + je * p_dim1], abs(d__2)) <= safmin) {
-
- /* Singular matrix pencil -- unit eigenvector */
-
- --ieig;
- i__1 = *n;
- for (jr = 1; jr <= i__1; ++jr) {
- vr[jr + ieig * vr_dim1] = 0.;
- /* L230: */
- }
- vr[ieig + ieig * vr_dim1] = 1.;
- goto L500;
- }
- }
-
- /* Clear vector */
-
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(jw + 2) * *n + jr] = 0.;
- /* L240: */
- }
- /* L250: */
- }
-
- /* Compute coefficients in ( a A - b B ) x = 0 */
- /* a is ACOEF */
- /* b is BCOEFR + i*BCOEFI */
-
- if (! ilcplx) {
-
- /* Real eigenvalue */
-
- /* Computing MAX */
- d__3 = (d__1 = s[je + je * s_dim1], abs(d__1)) * ascale, d__4
- = (d__2 = p[je + je * p_dim1], abs(d__2)) * bscale,
- d__3 = f2cmax(d__3,d__4);
- temp = 1. / f2cmax(d__3,safmin);
- salfar = temp * s[je + je * s_dim1] * ascale;
- sbeta = temp * p[je + je * p_dim1] * bscale;
- acoef = sbeta * ascale;
- bcoefr = salfar * bscale;
- bcoefi = 0.;
-
- /* Scale to avoid underflow */
-
- scale = 1.;
- lsa = abs(sbeta) >= safmin && abs(acoef) < small;
- lsb = abs(salfar) >= safmin && abs(bcoefr) < small;
- if (lsa) {
- scale = small / abs(sbeta) * f2cmin(anorm,big);
- }
- if (lsb) {
- /* Computing MAX */
- d__1 = scale, d__2 = small / abs(salfar) * f2cmin(bnorm,big);
- scale = f2cmax(d__1,d__2);
- }
- if (lsa || lsb) {
- /* Computing MIN */
- /* Computing MAX */
- d__3 = 1., d__4 = abs(acoef), d__3 = f2cmax(d__3,d__4), d__4
- = abs(bcoefr);
- d__1 = scale, d__2 = 1. / (safmin * f2cmax(d__3,d__4));
- scale = f2cmin(d__1,d__2);
- if (lsa) {
- acoef = ascale * (scale * sbeta);
- } else {
- acoef = scale * acoef;
- }
- if (lsb) {
- bcoefr = bscale * (scale * salfar);
- } else {
- bcoefr = scale * bcoefr;
- }
- }
- acoefa = abs(acoef);
- bcoefa = abs(bcoefr);
-
- /* First component is 1 */
-
- work[(*n << 1) + je] = 1.;
- xmax = 1.;
-
- /* Compute contribution from column JE of A and B to sum */
- /* (See "Further Details", above.) */
-
- i__1 = je - 1;
- for (jr = 1; jr <= i__1; ++jr) {
- work[(*n << 1) + jr] = bcoefr * p[jr + je * p_dim1] -
- acoef * s[jr + je * s_dim1];
- /* L260: */
- }
- } else {
-
- /* Complex eigenvalue */
-
- d__1 = safmin * 100.;
- dlag2_(&s[je - 1 + (je - 1) * s_dim1], lds, &p[je - 1 + (je -
- 1) * p_dim1], ldp, &d__1, &acoef, &temp, &bcoefr, &
- temp2, &bcoefi);
- if (bcoefi == 0.) {
- *info = je - 1;
- return;
- }
-
- /* Scale to avoid over/underflow */
-
- acoefa = abs(acoef);
- bcoefa = abs(bcoefr) + abs(bcoefi);
- scale = 1.;
- if (acoefa * ulp < safmin && acoefa >= safmin) {
- scale = safmin / ulp / acoefa;
- }
- if (bcoefa * ulp < safmin && bcoefa >= safmin) {
- /* Computing MAX */
- d__1 = scale, d__2 = safmin / ulp / bcoefa;
- scale = f2cmax(d__1,d__2);
- }
- if (safmin * acoefa > ascale) {
- scale = ascale / (safmin * acoefa);
- }
- if (safmin * bcoefa > bscale) {
- /* Computing MIN */
- d__1 = scale, d__2 = bscale / (safmin * bcoefa);
- scale = f2cmin(d__1,d__2);
- }
- if (scale != 1.) {
- acoef = scale * acoef;
- acoefa = abs(acoef);
- bcoefr = scale * bcoefr;
- bcoefi = scale * bcoefi;
- bcoefa = abs(bcoefr) + abs(bcoefi);
- }
-
- /* Compute first two components of eigenvector */
- /* and contribution to sums */
-
- temp = acoef * s[je + (je - 1) * s_dim1];
- temp2r = acoef * s[je + je * s_dim1] - bcoefr * p[je + je *
- p_dim1];
- temp2i = -bcoefi * p[je + je * p_dim1];
- if (abs(temp) >= abs(temp2r) + abs(temp2i)) {
- work[(*n << 1) + je] = 1.;
- work[*n * 3 + je] = 0.;
- work[(*n << 1) + je - 1] = -temp2r / temp;
- work[*n * 3 + je - 1] = -temp2i / temp;
- } else {
- work[(*n << 1) + je - 1] = 1.;
- work[*n * 3 + je - 1] = 0.;
- temp = acoef * s[je - 1 + je * s_dim1];
- work[(*n << 1) + je] = (bcoefr * p[je - 1 + (je - 1) *
- p_dim1] - acoef * s[je - 1 + (je - 1) * s_dim1]) /
- temp;
- work[*n * 3 + je] = bcoefi * p[je - 1 + (je - 1) * p_dim1]
- / temp;
- }
-
- /* Computing MAX */
- d__5 = (d__1 = work[(*n << 1) + je], abs(d__1)) + (d__2 =
- work[*n * 3 + je], abs(d__2)), d__6 = (d__3 = work[(*
- n << 1) + je - 1], abs(d__3)) + (d__4 = work[*n * 3 +
- je - 1], abs(d__4));
- xmax = f2cmax(d__5,d__6);
-
- /* Compute contribution from columns JE and JE-1 */
- /* of A and B to the sums. */
-
- creala = acoef * work[(*n << 1) + je - 1];
- cimaga = acoef * work[*n * 3 + je - 1];
- crealb = bcoefr * work[(*n << 1) + je - 1] - bcoefi * work[*n
- * 3 + je - 1];
- cimagb = bcoefi * work[(*n << 1) + je - 1] + bcoefr * work[*n
- * 3 + je - 1];
- cre2a = acoef * work[(*n << 1) + je];
- cim2a = acoef * work[*n * 3 + je];
- cre2b = bcoefr * work[(*n << 1) + je] - bcoefi * work[*n * 3
- + je];
- cim2b = bcoefi * work[(*n << 1) + je] + bcoefr * work[*n * 3
- + je];
- i__1 = je - 2;
- for (jr = 1; jr <= i__1; ++jr) {
- work[(*n << 1) + jr] = -creala * s[jr + (je - 1) * s_dim1]
- + crealb * p[jr + (je - 1) * p_dim1] - cre2a * s[
- jr + je * s_dim1] + cre2b * p[jr + je * p_dim1];
- work[*n * 3 + jr] = -cimaga * s[jr + (je - 1) * s_dim1] +
- cimagb * p[jr + (je - 1) * p_dim1] - cim2a * s[jr
- + je * s_dim1] + cim2b * p[jr + je * p_dim1];
- /* L270: */
- }
- }
-
- /* Computing MAX */
- d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, d__1 =
- f2cmax(d__1,d__2);
- dmin__ = f2cmax(d__1,safmin);
-
- /* Columnwise triangular solve of (a A - b B) x = 0 */
-
- il2by2 = FALSE_;
- for (j = je - nw; j >= 1; --j) {
-
- /* If a 2-by-2 block, is in position j-1:j, wait until */
- /* next iteration to process it (when it will be j:j+1) */
-
- if (! il2by2 && j > 1) {
- if (s[j + (j - 1) * s_dim1] != 0.) {
- il2by2 = TRUE_;
- goto L370;
- }
- }
- bdiag[0] = p[j + j * p_dim1];
- if (il2by2) {
- na = 2;
- bdiag[1] = p[j + 1 + (j + 1) * p_dim1];
- } else {
- na = 1;
- }
-
- /* Compute x(j) (and x(j+1), if 2-by-2 block) */
-
- dlaln2_(&c_false, &na, &nw, &dmin__, &acoef, &s[j + j *
- s_dim1], lds, bdiag, &bdiag[1], &work[(*n << 1) + j],
- n, &bcoefr, &bcoefi, sum, &c__2, &scale, &temp, &
- iinfo);
- if (scale < 1.) {
-
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = je;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
- *n + jr];
- /* L280: */
- }
- /* L290: */
- }
- }
- /* Computing MAX */
- d__1 = scale * xmax;
- xmax = f2cmax(d__1,temp);
-
- i__1 = nw;
- for (jw = 1; jw <= i__1; ++jw) {
- i__2 = na;
- for (ja = 1; ja <= i__2; ++ja) {
- work[(jw + 1) * *n + j + ja - 1] = sum[ja + (jw << 1)
- - 3];
- /* L300: */
- }
- /* L310: */
- }
-
- /* w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */
-
- if (j > 1) {
-
- /* Check whether scaling is necessary for sum. */
-
- xscale = 1. / f2cmax(1.,xmax);
- temp = acoefa * work[j] + bcoefa * work[*n + j];
- if (il2by2) {
- /* Computing MAX */
- d__1 = temp, d__2 = acoefa * work[j + 1] + bcoefa *
- work[*n + j + 1];
- temp = f2cmax(d__1,d__2);
- }
- /* Computing MAX */
- d__1 = f2cmax(temp,acoefa);
- temp = f2cmax(d__1,bcoefa);
- if (temp > bignum * xscale) {
-
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = je;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(jw + 2) * *n + jr] = xscale * work[(jw
- + 2) * *n + jr];
- /* L320: */
- }
- /* L330: */
- }
- xmax *= xscale;
- }
-
- /* Compute the contributions of the off-diagonals of */
- /* column j (and j+1, if 2-by-2 block) of A and B to the */
- /* sums. */
-
-
- i__1 = na;
- for (ja = 1; ja <= i__1; ++ja) {
- if (ilcplx) {
- creala = acoef * work[(*n << 1) + j + ja - 1];
- cimaga = acoef * work[*n * 3 + j + ja - 1];
- crealb = bcoefr * work[(*n << 1) + j + ja - 1] -
- bcoefi * work[*n * 3 + j + ja - 1];
- cimagb = bcoefi * work[(*n << 1) + j + ja - 1] +
- bcoefr * work[*n * 3 + j + ja - 1];
- i__2 = j - 1;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(*n << 1) + jr] = work[(*n << 1) + jr] -
- creala * s[jr + (j + ja - 1) * s_dim1]
- + crealb * p[jr + (j + ja - 1) *
- p_dim1];
- work[*n * 3 + jr] = work[*n * 3 + jr] -
- cimaga * s[jr + (j + ja - 1) * s_dim1]
- + cimagb * p[jr + (j + ja - 1) *
- p_dim1];
- /* L340: */
- }
- } else {
- creala = acoef * work[(*n << 1) + j + ja - 1];
- crealb = bcoefr * work[(*n << 1) + j + ja - 1];
- i__2 = j - 1;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(*n << 1) + jr] = work[(*n << 1) + jr] -
- creala * s[jr + (j + ja - 1) * s_dim1]
- + crealb * p[jr + (j + ja - 1) *
- p_dim1];
- /* L350: */
- }
- }
- /* L360: */
- }
- }
-
- il2by2 = FALSE_;
- L370:
- ;
- }
-
- /* Copy eigenvector to VR, back transforming if */
- /* HOWMNY='B'. */
-
- ieig -= nw;
- if (ilback) {
-
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- work[(jw + 4) * *n + jr] = work[(jw + 2) * *n + 1] *
- vr[jr + vr_dim1];
- /* L380: */
- }
-
- /* A series of compiler directives to defeat */
- /* vectorization for the next loop */
-
-
- i__2 = je;
- for (jc = 2; jc <= i__2; ++jc) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- work[(jw + 4) * *n + jr] += work[(jw + 2) * *n +
- jc] * vr[jr + jc * vr_dim1];
- /* L390: */
- }
- /* L400: */
- }
- /* L410: */
- }
-
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 4) * *n +
- jr];
- /* L420: */
- }
- /* L430: */
- }
-
- iend = *n;
- } else {
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + (ieig + jw) * vr_dim1] = work[(jw + 2) * *n +
- jr];
- /* L440: */
- }
- /* L450: */
- }
-
- iend = je;
- }
-
- /* Scale eigenvector */
-
- xmax = 0.;
- if (ilcplx) {
- i__1 = iend;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- d__3 = xmax, d__4 = (d__1 = vr[j + ieig * vr_dim1], abs(
- d__1)) + (d__2 = vr[j + (ieig + 1) * vr_dim1],
- abs(d__2));
- xmax = f2cmax(d__3,d__4);
- /* L460: */
- }
- } else {
- i__1 = iend;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- d__2 = xmax, d__3 = (d__1 = vr[j + ieig * vr_dim1], abs(
- d__1));
- xmax = f2cmax(d__2,d__3);
- /* L470: */
- }
- }
-
- if (xmax > safmin) {
- xscale = 1. / xmax;
- i__1 = nw - 1;
- for (jw = 0; jw <= i__1; ++jw) {
- i__2 = iend;
- for (jr = 1; jr <= i__2; ++jr) {
- vr[jr + (ieig + jw) * vr_dim1] = xscale * vr[jr + (
- ieig + jw) * vr_dim1];
- /* L480: */
- }
- /* L490: */
- }
- }
- L500:
- ;
- }
- }
-
- return;
-
- /* End of DTGEVC */
-
- } /* dtgevc_ */
|