|
- *> \brief \b DSYTRI_3
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYTRI_3 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytri_3.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytri_3.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytri_3.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION A( LDA, * ), E( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *> DSYTRI_3 computes the inverse of a real symmetric indefinite
- *> matrix A using the factorization computed by DSYTRF_RK or DSYTRF_BK:
- *>
- *> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
- *>
- *> where U (or L) is unit upper (or lower) triangular matrix,
- *> U**T (or L**T) is the transpose of U (or L), P is a permutation
- *> matrix, P**T is the transpose of P, and D is symmetric and block
- *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
- *>
- *> DSYTRI_3 sets the leading dimension of the workspace before calling
- *> DSYTRI_3X that actually computes the inverse. This is the blocked
- *> version of the algorithm, calling Level 3 BLAS.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are
- *> stored as an upper or lower triangular matrix.
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, diagonal of the block diagonal matrix D and
- *> factors U or L as computed by DSYTRF_RK and DSYTRF_BK:
- *> a) ONLY diagonal elements of the symmetric block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> should be provided on entry in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *>
- *> On exit, if INFO = 0, the symmetric inverse of the original
- *> matrix.
- *> If UPLO = 'U': the upper triangular part of the inverse
- *> is formed and the part of A below the diagonal is not
- *> referenced;
- *> If UPLO = 'L': the lower triangular part of the inverse
- *> is formed and the part of A above the diagonal is not
- *> referenced.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N)
- *> On entry, contains the superdiagonal (or subdiagonal)
- *> elements of the symmetric block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
- *> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
- *>
- *> NOTE: For 1-by-1 diagonal block D(k), where
- *> 1 <= k <= N, the element E(k) is not referenced in both
- *> UPLO = 'U' or UPLO = 'L' cases.
- *> \endverbatim
- *>
- *> \param[in] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D
- *> as determined by DSYTRF_RK or DSYTRF_BK.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The length of WORK.
- *> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3).
- *>
- *> If LWORK = -1, then a workspace query is assumed;
- *> the routine only calculates the optimal size of the optimal
- *> size of the WORK array, returns this value as the first
- *> entry of the WORK array, and no error message related to
- *> LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
- *> inverse could not be computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup hetri_3
- *
- *> \par Contributors:
- * ==================
- *> \verbatim
- *>
- *> November 2017, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> \endverbatim
- *
- * =====================================================================
- SUBROUTINE DSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION A( LDA, * ), E( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- LOGICAL UPPER, LQUERY
- INTEGER LWKOPT, NB
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- INTEGER ILAENV
- EXTERNAL LSAME, ILAENV
- * ..
- * .. External Subroutines ..
- EXTERNAL DSYTRI_3X, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- LQUERY = ( LWORK.EQ.-1 )
- *
- * Determine the block size
- *
- IF( N.EQ.0 ) THEN
- LWKOPT = 1
- ELSE
- NB = MAX( 1, ILAENV( 1, 'DSYTRI_3', UPLO, N, -1, -1, -1 ) )
- LWKOPT = ( N+NB+1 ) * ( NB+3 )
- END IF
- WORK( 1 ) = LWKOPT
- *
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -4
- ELSE IF( LWORK.LT.LWKOPT .AND. .NOT.LQUERY ) THEN
- INFO = -8
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYTRI_3', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- CALL DSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO )
- *
- WORK( 1 ) = LWKOPT
- *
- RETURN
- *
- * End of DSYTRI_3
- *
- END
|