|
- *> \brief \b DSYCONVF
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSYCONVF + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyconvf.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyconvf.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyconvf.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSYCONVF( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO, WAY
- * INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION A( LDA, * ), E( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *> If parameter WAY = 'C':
- *> DSYCONVF converts the factorization output format used in
- *> DSYTRF provided on entry in parameter A into the factorization
- *> output format used in DSYTRF_RK (or DSYTRF_BK) that is stored
- *> on exit in parameters A and E. It also converts in place details of
- *> the interchanges stored in IPIV from the format used in DSYTRF into
- *> the format used in DSYTRF_RK (or DSYTRF_BK).
- *>
- *> If parameter WAY = 'R':
- *> DSYCONVF performs the conversion in reverse direction, i.e.
- *> converts the factorization output format used in DSYTRF_RK
- *> (or DSYTRF_BK) provided on entry in parameters A and E into
- *> the factorization output format used in DSYTRF that is stored
- *> on exit in parameter A. It also converts in place details of
- *> the interchanges stored in IPIV from the format used in DSYTRF_RK
- *> (or DSYTRF_BK) into the format used in DSYTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> Specifies whether the details of the factorization are
- *> stored as an upper or lower triangular matrix A.
- *> = 'U': Upper triangular
- *> = 'L': Lower triangular
- *> \endverbatim
- *>
- *> \param[in] WAY
- *> \verbatim
- *> WAY is CHARACTER*1
- *> = 'C': Convert
- *> = 'R': Revert
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *>
- *> 1) If WAY ='C':
- *>
- *> On entry, contains factorization details in format used in
- *> DSYTRF:
- *> a) all elements of the symmetric block diagonal
- *> matrix D on the diagonal of A and on superdiagonal
- *> (or subdiagonal) of A, and
- *> b) If UPLO = 'U': multipliers used to obtain factor U
- *> in the superdiagonal part of A.
- *> If UPLO = 'L': multipliers used to obtain factor L
- *> in the superdiagonal part of A.
- *>
- *> On exit, contains factorization details in format used in
- *> DSYTRF_RK or DSYTRF_BK:
- *> a) ONLY diagonal elements of the symmetric block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> are stored on exit in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *>
- *> 2) If WAY = 'R':
- *>
- *> On entry, contains factorization details in format used in
- *> DSYTRF_RK or DSYTRF_BK:
- *> a) ONLY diagonal elements of the symmetric block diagonal
- *> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
- *> (superdiagonal (or subdiagonal) elements of D
- *> are stored on exit in array E), and
- *> b) If UPLO = 'U': factor U in the superdiagonal part of A.
- *> If UPLO = 'L': factor L in the subdiagonal part of A.
- *>
- *> On exit, contains factorization details in format used in
- *> DSYTRF:
- *> a) all elements of the symmetric block diagonal
- *> matrix D on the diagonal of A and on superdiagonal
- *> (or subdiagonal) of A, and
- *> b) If UPLO = 'U': multipliers used to obtain factor U
- *> in the superdiagonal part of A.
- *> If UPLO = 'L': multipliers used to obtain factor L
- *> in the superdiagonal part of A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N)
- *>
- *> 1) If WAY ='C':
- *>
- *> On entry, just a workspace.
- *>
- *> On exit, contains the superdiagonal (or subdiagonal)
- *> elements of the symmetric block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
- *> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
- *>
- *> 2) If WAY = 'R':
- *>
- *> On entry, contains the superdiagonal (or subdiagonal)
- *> elements of the symmetric block diagonal matrix D
- *> with 1-by-1 or 2-by-2 diagonal blocks, where
- *> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
- *> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
- *>
- *> On exit, is not changed
- *> \endverbatim
- *.
- *> \param[in,out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *>
- *> 1) If WAY ='C':
- *> On entry, details of the interchanges and the block
- *> structure of D in the format used in DSYTRF.
- *> On exit, details of the interchanges and the block
- *> structure of D in the format used in DSYTRF_RK
- *> ( or DSYTRF_BK).
- *>
- *> 1) If WAY ='R':
- *> On entry, details of the interchanges and the block
- *> structure of D in the format used in DSYTRF_RK
- *> ( or DSYTRF_BK).
- *> On exit, details of the interchanges and the block
- *> structure of D in the format used in DSYTRF.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleSYcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> November 2017, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> \endverbatim
- * =====================================================================
- SUBROUTINE DSYCONVF( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO, WAY
- INTEGER INFO, LDA, N
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION A( LDA, * ), E( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- *
- * .. External Subroutines ..
- EXTERNAL DSWAP, XERBLA
- * .. Local Scalars ..
- LOGICAL UPPER, CONVERT
- INTEGER I, IP
- * ..
- * .. Executable Statements ..
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- CONVERT = LSAME( WAY, 'C' )
- IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( .NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
-
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSYCONVF', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( UPPER ) THEN
- *
- * Begin A is UPPER
- *
- IF ( CONVERT ) THEN
- *
- * Convert A (A is upper)
- *
- *
- * Convert VALUE
- *
- * Assign superdiagonal entries of D to array E and zero out
- * corresponding entries in input storage A
- *
- I = N
- E( 1 ) = ZERO
- DO WHILE ( I.GT.1 )
- IF( IPIV( I ).LT.0 ) THEN
- E( I ) = A( I-1, I )
- E( I-1 ) = ZERO
- A( I-1, I ) = ZERO
- I = I - 1
- ELSE
- E( I ) = ZERO
- END IF
- I = I - 1
- END DO
- *
- * Convert PERMUTATIONS and IPIV
- *
- * Apply permutations to submatrices of upper part of A
- * in factorization order where i decreases from N to 1
- *
- I = N
- DO WHILE ( I.GE.1 )
- IF( IPIV( I ).GT.0 ) THEN
- *
- * 1-by-1 pivot interchange
- *
- * Swap rows i and IPIV(i) in A(1:i,N-i:N)
- *
- IP = IPIV( I )
- IF( I.LT.N ) THEN
- IF( IP.NE.I ) THEN
- CALL DSWAP( N-I, A( I, I+1 ), LDA,
- $ A( IP, I+1 ), LDA )
- END IF
- END IF
- *
- ELSE
- *
- * 2-by-2 pivot interchange
- *
- * Swap rows i-1 and IPIV(i) in A(1:i,N-i:N)
- *
- IP = -IPIV( I )
- IF( I.LT.N ) THEN
- IF( IP.NE.(I-1) ) THEN
- CALL DSWAP( N-I, A( I-1, I+1 ), LDA,
- $ A( IP, I+1 ), LDA )
- END IF
- END IF
- *
- * Convert IPIV
- * There is no interchange of rows i and and IPIV(i),
- * so this should be reflected in IPIV format for
- * *SYTRF_RK ( or *SYTRF_BK)
- *
- IPIV( I ) = I
- *
- I = I - 1
- *
- END IF
- I = I - 1
- END DO
- *
- ELSE
- *
- * Revert A (A is upper)
- *
- *
- * Revert PERMUTATIONS and IPIV
- *
- * Apply permutations to submatrices of upper part of A
- * in reverse factorization order where i increases from 1 to N
- *
- I = 1
- DO WHILE ( I.LE.N )
- IF( IPIV( I ).GT.0 ) THEN
- *
- * 1-by-1 pivot interchange
- *
- * Swap rows i and IPIV(i) in A(1:i,N-i:N)
- *
- IP = IPIV( I )
- IF( I.LT.N ) THEN
- IF( IP.NE.I ) THEN
- CALL DSWAP( N-I, A( IP, I+1 ), LDA,
- $ A( I, I+1 ), LDA )
- END IF
- END IF
- *
- ELSE
- *
- * 2-by-2 pivot interchange
- *
- * Swap rows i-1 and IPIV(i) in A(1:i,N-i:N)
- *
- I = I + 1
- IP = -IPIV( I )
- IF( I.LT.N ) THEN
- IF( IP.NE.(I-1) ) THEN
- CALL DSWAP( N-I, A( IP, I+1 ), LDA,
- $ A( I-1, I+1 ), LDA )
- END IF
- END IF
- *
- * Convert IPIV
- * There is one interchange of rows i-1 and IPIV(i-1),
- * so this should be recorded in two consecutive entries
- * in IPIV format for *SYTRF
- *
- IPIV( I ) = IPIV( I-1 )
- *
- END IF
- I = I + 1
- END DO
- *
- * Revert VALUE
- * Assign superdiagonal entries of D from array E to
- * superdiagonal entries of A.
- *
- I = N
- DO WHILE ( I.GT.1 )
- IF( IPIV( I ).LT.0 ) THEN
- A( I-1, I ) = E( I )
- I = I - 1
- END IF
- I = I - 1
- END DO
- *
- * End A is UPPER
- *
- END IF
- *
- ELSE
- *
- * Begin A is LOWER
- *
- IF ( CONVERT ) THEN
- *
- * Convert A (A is lower)
- *
- *
- * Convert VALUE
- * Assign subdiagonal entries of D to array E and zero out
- * corresponding entries in input storage A
- *
- I = 1
- E( N ) = ZERO
- DO WHILE ( I.LE.N )
- IF( I.LT.N .AND. IPIV(I).LT.0 ) THEN
- E( I ) = A( I+1, I )
- E( I+1 ) = ZERO
- A( I+1, I ) = ZERO
- I = I + 1
- ELSE
- E( I ) = ZERO
- END IF
- I = I + 1
- END DO
- *
- * Convert PERMUTATIONS and IPIV
- *
- * Apply permutations to submatrices of lower part of A
- * in factorization order where k increases from 1 to N
- *
- I = 1
- DO WHILE ( I.LE.N )
- IF( IPIV( I ).GT.0 ) THEN
- *
- * 1-by-1 pivot interchange
- *
- * Swap rows i and IPIV(i) in A(i:N,1:i-1)
- *
- IP = IPIV( I )
- IF ( I.GT.1 ) THEN
- IF( IP.NE.I ) THEN
- CALL DSWAP( I-1, A( I, 1 ), LDA,
- $ A( IP, 1 ), LDA )
- END IF
- END IF
- *
- ELSE
- *
- * 2-by-2 pivot interchange
- *
- * Swap rows i+1 and IPIV(i) in A(i:N,1:i-1)
- *
- IP = -IPIV( I )
- IF ( I.GT.1 ) THEN
- IF( IP.NE.(I+1) ) THEN
- CALL DSWAP( I-1, A( I+1, 1 ), LDA,
- $ A( IP, 1 ), LDA )
- END IF
- END IF
- *
- * Convert IPIV
- * There is no interchange of rows i and and IPIV(i),
- * so this should be reflected in IPIV format for
- * *SYTRF_RK ( or *SYTRF_BK)
- *
- IPIV( I ) = I
- *
- I = I + 1
- *
- END IF
- I = I + 1
- END DO
- *
- ELSE
- *
- * Revert A (A is lower)
- *
- *
- * Revert PERMUTATIONS and IPIV
- *
- * Apply permutations to submatrices of lower part of A
- * in reverse factorization order where i decreases from N to 1
- *
- I = N
- DO WHILE ( I.GE.1 )
- IF( IPIV( I ).GT.0 ) THEN
- *
- * 1-by-1 pivot interchange
- *
- * Swap rows i and IPIV(i) in A(i:N,1:i-1)
- *
- IP = IPIV( I )
- IF ( I.GT.1 ) THEN
- IF( IP.NE.I ) THEN
- CALL DSWAP( I-1, A( IP, 1 ), LDA,
- $ A( I, 1 ), LDA )
- END IF
- END IF
- *
- ELSE
- *
- * 2-by-2 pivot interchange
- *
- * Swap rows i+1 and IPIV(i) in A(i:N,1:i-1)
- *
- I = I - 1
- IP = -IPIV( I )
- IF ( I.GT.1 ) THEN
- IF( IP.NE.(I+1) ) THEN
- CALL DSWAP( I-1, A( IP, 1 ), LDA,
- $ A( I+1, 1 ), LDA )
- END IF
- END IF
- *
- * Convert IPIV
- * There is one interchange of rows i+1 and IPIV(i+1),
- * so this should be recorded in consecutive entries
- * in IPIV format for *SYTRF
- *
- IPIV( I ) = IPIV( I+1 )
- *
- END IF
- I = I - 1
- END DO
- *
- * Revert VALUE
- * Assign subdiagonal entries of D from array E to
- * subdiagonal entries of A.
- *
- I = 1
- DO WHILE ( I.LE.N-1 )
- IF( IPIV( I ).LT.0 ) THEN
- A( I + 1, I ) = E( I )
- I = I + 1
- END IF
- I = I + 1
- END DO
- *
- END IF
- *
- * End A is LOWER
- *
- END IF
-
- RETURN
- *
- * End of DSYCONVF
- *
- END
|