|
- *> \brief <b> DSTEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSTEVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
- * LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ
- * INTEGER INFO, LDZ, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
- *> real symmetric tridiagonal matrix. If eigenvectors are desired, it
- *> uses a divide and conquer algorithm.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> On entry, the n diagonal elements of the tridiagonal matrix
- *> A.
- *> On exit, if INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[in,out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (N-1)
- *> On entry, the (n-1) subdiagonal elements of the tridiagonal
- *> matrix A, stored in elements 1 to N-1 of E.
- *> On exit, the contents of E are destroyed.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
- *> eigenvectors of the matrix A, with the i-th column of Z
- *> holding the eigenvector associated with D(i).
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array,
- *> dimension (LWORK)
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
- *> If JOBZ = 'V' and N > 1 then LWORK must be at least
- *> ( 1 + 4*N + N**2 ).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK and IWORK
- *> arrays, returns these values as the first entries of the WORK
- *> and IWORK arrays, and no error message related to LWORK or
- *> LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
- *> If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK and IWORK arrays, and no error message related to
- *> LWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the algorithm failed to converge; i
- *> off-diagonal elements of E did not converge to zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHEReigen
- *
- * =====================================================================
- SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
- $ LIWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ
- INTEGER INFO, LDZ, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY, WANTZ
- INTEGER ISCALE, LIWMIN, LWMIN
- DOUBLE PRECISION BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
- $ TNRM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANST
- EXTERNAL LSAME, DLAMCH, DLANST
- * ..
- * .. External Subroutines ..
- EXTERNAL DSCAL, DSTEDC, DSTERF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- INFO = 0
- LIWMIN = 1
- LWMIN = 1
- IF( N.GT.1 .AND. WANTZ ) THEN
- LWMIN = 1 + 4*N + N**2
- LIWMIN = 3 + 5*N
- END IF
- *
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -6
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -8
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -10
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSTEVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- IF( WANTZ )
- $ Z( 1, 1 ) = ONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = DLAMCH( 'Safe minimum' )
- EPS = DLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = SQRT( BIGNUM )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ISCALE = 0
- TNRM = DLANST( 'M', N, D, E )
- IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / TNRM
- ELSE IF( TNRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / TNRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- CALL DSCAL( N, SIGMA, D, 1 )
- CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
- END IF
- *
- * For eigenvalues only, call DSTERF. For eigenvalues and
- * eigenvectors, call DSTEDC.
- *
- IF( .NOT.WANTZ ) THEN
- CALL DSTERF( N, D, E, INFO )
- ELSE
- CALL DSTEDC( 'I', N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK,
- $ INFO )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- IF( ISCALE.EQ.1 )
- $ CALL DSCAL( N, ONE / SIGMA, D, 1 )
- *
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- *
- RETURN
- *
- * End of DSTEVD
- *
- END
|