|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublereal c_b9 = 0.;
- static doublereal c_b10 = 1.;
- static integer c__0 = 0;
- static integer c__1 = 1;
- static integer c__2 = 2;
-
- /* > \brief \b DSTEQR */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DSTEQR + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsteqr.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsteqr.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsteqr.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) */
-
- /* CHARACTER COMPZ */
- /* INTEGER INFO, LDZ, N */
- /* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
- /* > symmetric tridiagonal matrix using the implicit QL or QR method. */
- /* > The eigenvectors of a full or band symmetric matrix can also be found */
- /* > if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to */
- /* > tridiagonal form. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] COMPZ */
- /* > \verbatim */
- /* > COMPZ is CHARACTER*1 */
- /* > = 'N': Compute eigenvalues only. */
- /* > = 'V': Compute eigenvalues and eigenvectors of the original */
- /* > symmetric matrix. On entry, Z must contain the */
- /* > orthogonal matrix used to reduce the original matrix */
- /* > to tridiagonal form. */
- /* > = 'I': Compute eigenvalues and eigenvectors of the */
- /* > tridiagonal matrix. Z is initialized to the identity */
- /* > matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, the diagonal elements of the tridiagonal matrix. */
- /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] E */
- /* > \verbatim */
- /* > E is DOUBLE PRECISION array, dimension (N-1) */
- /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */
- /* > matrix. */
- /* > On exit, E has been destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension (LDZ, N) */
- /* > On entry, if COMPZ = 'V', then Z contains the orthogonal */
- /* > matrix used in the reduction to tridiagonal form. */
- /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
- /* > orthonormal eigenvectors of the original symmetric matrix, */
- /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
- /* > of the symmetric tridiagonal matrix. */
- /* > If COMPZ = 'N', then Z is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1, and if */
- /* > eigenvectors are desired, then LDZ >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (f2cmax(1,2*N-2)) */
- /* > If COMPZ = 'N', then WORK is not referenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: the algorithm has failed to find all the eigenvalues in */
- /* > a total of 30*N iterations; if INFO = i, then i */
- /* > elements of E have not converged to zero; on exit, D */
- /* > and E contain the elements of a symmetric tridiagonal */
- /* > matrix which is orthogonally similar to the original */
- /* > matrix. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup auxOTHERcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void dsteqr_(char *compz, integer *n, doublereal *d__,
- doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
- integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1, d__2;
-
- /* Local variables */
- integer lend, jtot;
- extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *);
- doublereal b, c__, f, g;
- integer i__, j, k, l, m;
- doublereal p, r__, s;
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *);
- doublereal anorm;
- extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer l1;
- extern /* Subroutine */ void dlaev2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
- integer lendm1, lendp1;
- extern doublereal dlapy2_(doublereal *, doublereal *);
- integer ii;
- extern doublereal dlamch_(char *);
- integer mm, iscale;
- extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), dlaset_(char *, integer *, integer
- *, doublereal *, doublereal *, doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ void dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- doublereal safmax;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *,
- integer *);
- integer lendsv;
- doublereal ssfmin;
- integer nmaxit, icompz;
- doublereal ssfmax;
- integer lm1, mm1, nm1;
- doublereal rt1, rt2, eps;
- integer lsv;
- doublereal tst, eps2;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- --e;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- *info = 0;
-
- if (lsame_(compz, "N")) {
- icompz = 0;
- } else if (lsame_(compz, "V")) {
- icompz = 1;
- } else if (lsame_(compz, "I")) {
- icompz = 2;
- } else {
- icompz = -1;
- }
- if (icompz < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DSTEQR", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- if (*n == 0) {
- return;
- }
-
- if (*n == 1) {
- if (icompz == 2) {
- z__[z_dim1 + 1] = 1.;
- }
- return;
- }
-
- /* Determine the unit roundoff and over/underflow thresholds. */
-
- eps = dlamch_("E");
- /* Computing 2nd power */
- d__1 = eps;
- eps2 = d__1 * d__1;
- safmin = dlamch_("S");
- safmax = 1. / safmin;
- ssfmax = sqrt(safmax) / 3.;
- ssfmin = sqrt(safmin) / eps2;
-
- /* Compute the eigenvalues and eigenvectors of the tridiagonal */
- /* matrix. */
-
- if (icompz == 2) {
- dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
- }
-
- nmaxit = *n * 30;
- jtot = 0;
-
- /* Determine where the matrix splits and choose QL or QR iteration */
- /* for each block, according to whether top or bottom diagonal */
- /* element is smaller. */
-
- l1 = 1;
- nm1 = *n - 1;
-
- L10:
- if (l1 > *n) {
- goto L160;
- }
- if (l1 > 1) {
- e[l1 - 1] = 0.;
- }
- if (l1 <= nm1) {
- i__1 = nm1;
- for (m = l1; m <= i__1; ++m) {
- tst = (d__1 = e[m], abs(d__1));
- if (tst == 0.) {
- goto L30;
- }
- if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
- + 1], abs(d__2))) * eps) {
- e[m] = 0.;
- goto L30;
- }
- /* L20: */
- }
- }
- m = *n;
-
- L30:
- l = l1;
- lsv = l;
- lend = m;
- lendsv = lend;
- l1 = m + 1;
- if (lend == l) {
- goto L10;
- }
-
- /* Scale submatrix in rows and columns L to LEND */
-
- i__1 = lend - l + 1;
- anorm = dlanst_("M", &i__1, &d__[l], &e[l]);
- iscale = 0;
- if (anorm == 0.) {
- goto L10;
- }
- if (anorm > ssfmax) {
- iscale = 1;
- i__1 = lend - l + 1;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
- info);
- } else if (anorm < ssfmin) {
- iscale = 2;
- i__1 = lend - l + 1;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
- info);
- i__1 = lend - l;
- dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
- info);
- }
-
- /* Choose between QL and QR iteration */
-
- if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
- lend = lsv;
- l = lendsv;
- }
-
- if (lend > l) {
-
- /* QL Iteration */
-
- /* Look for small subdiagonal element. */
-
- L40:
- if (l != lend) {
- lendm1 = lend - 1;
- i__1 = lendm1;
- for (m = l; m <= i__1; ++m) {
- /* Computing 2nd power */
- d__2 = (d__1 = e[m], abs(d__1));
- tst = d__2 * d__2;
- if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
- + 1], abs(d__2)) + safmin) {
- goto L60;
- }
- /* L50: */
- }
- }
-
- m = lend;
-
- L60:
- if (m < lend) {
- e[m] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L80;
- }
-
- /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
- /* to compute its eigensystem. */
-
- if (m == l + 1) {
- if (icompz > 0) {
- dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
- work[l] = c__;
- work[*n - 1 + l] = s;
- dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
- z__[l * z_dim1 + 1], ldz);
- } else {
- dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
- }
- d__[l] = rt1;
- d__[l + 1] = rt2;
- e[l] = 0.;
- l += 2;
- if (l <= lend) {
- goto L40;
- }
- goto L140;
- }
-
- if (jtot == nmaxit) {
- goto L140;
- }
- ++jtot;
-
- /* Form shift. */
-
- g = (d__[l + 1] - p) / (e[l] * 2.);
- r__ = dlapy2_(&g, &c_b10);
- g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
-
- s = 1.;
- c__ = 1.;
- p = 0.;
-
- /* Inner loop */
-
- mm1 = m - 1;
- i__1 = l;
- for (i__ = mm1; i__ >= i__1; --i__) {
- f = s * e[i__];
- b = c__ * e[i__];
- dlartg_(&g, &f, &c__, &s, &r__);
- if (i__ != m - 1) {
- e[i__ + 1] = r__;
- }
- g = d__[i__ + 1] - p;
- r__ = (d__[i__] - g) * s + c__ * 2. * b;
- p = s * r__;
- d__[i__ + 1] = g + p;
- g = c__ * r__ - b;
-
- /* If eigenvectors are desired, then save rotations. */
-
- if (icompz > 0) {
- work[i__] = c__;
- work[*n - 1 + i__] = -s;
- }
-
- /* L70: */
- }
-
- /* If eigenvectors are desired, then apply saved rotations. */
-
- if (icompz > 0) {
- mm = m - l + 1;
- dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
- * z_dim1 + 1], ldz);
- }
-
- d__[l] -= p;
- e[l] = g;
- goto L40;
-
- /* Eigenvalue found. */
-
- L80:
- d__[l] = p;
-
- ++l;
- if (l <= lend) {
- goto L40;
- }
- goto L140;
-
- } else {
-
- /* QR Iteration */
-
- /* Look for small superdiagonal element. */
-
- L90:
- if (l != lend) {
- lendp1 = lend + 1;
- i__1 = lendp1;
- for (m = l; m >= i__1; --m) {
- /* Computing 2nd power */
- d__2 = (d__1 = e[m - 1], abs(d__1));
- tst = d__2 * d__2;
- if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
- - 1], abs(d__2)) + safmin) {
- goto L110;
- }
- /* L100: */
- }
- }
-
- m = lend;
-
- L110:
- if (m > lend) {
- e[m - 1] = 0.;
- }
- p = d__[l];
- if (m == l) {
- goto L130;
- }
-
- /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
- /* to compute its eigensystem. */
-
- if (m == l - 1) {
- if (icompz > 0) {
- dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
- ;
- work[m] = c__;
- work[*n - 1 + m] = s;
- dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
- z__[(l - 1) * z_dim1 + 1], ldz);
- } else {
- dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
- }
- d__[l - 1] = rt1;
- d__[l] = rt2;
- e[l - 1] = 0.;
- l += -2;
- if (l >= lend) {
- goto L90;
- }
- goto L140;
- }
-
- if (jtot == nmaxit) {
- goto L140;
- }
- ++jtot;
-
- /* Form shift. */
-
- g = (d__[l - 1] - p) / (e[l - 1] * 2.);
- r__ = dlapy2_(&g, &c_b10);
- g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
-
- s = 1.;
- c__ = 1.;
- p = 0.;
-
- /* Inner loop */
-
- lm1 = l - 1;
- i__1 = lm1;
- for (i__ = m; i__ <= i__1; ++i__) {
- f = s * e[i__];
- b = c__ * e[i__];
- dlartg_(&g, &f, &c__, &s, &r__);
- if (i__ != m) {
- e[i__ - 1] = r__;
- }
- g = d__[i__] - p;
- r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
- p = s * r__;
- d__[i__] = g + p;
- g = c__ * r__ - b;
-
- /* If eigenvectors are desired, then save rotations. */
-
- if (icompz > 0) {
- work[i__] = c__;
- work[*n - 1 + i__] = s;
- }
-
- /* L120: */
- }
-
- /* If eigenvectors are desired, then apply saved rotations. */
-
- if (icompz > 0) {
- mm = l - m + 1;
- dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
- * z_dim1 + 1], ldz);
- }
-
- d__[l] -= p;
- e[lm1] = g;
- goto L90;
-
- /* Eigenvalue found. */
-
- L130:
- d__[l] = p;
-
- --l;
- if (l >= lend) {
- goto L90;
- }
- goto L140;
-
- }
-
- /* Undo scaling if necessary */
-
- L140:
- if (iscale == 1) {
- i__1 = lendsv - lsv + 1;
- dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- i__1 = lendsv - lsv;
- dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
- info);
- } else if (iscale == 2) {
- i__1 = lendsv - lsv + 1;
- dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
- n, info);
- i__1 = lendsv - lsv;
- dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
- info);
- }
-
- /* Check for no convergence to an eigenvalue after a total */
- /* of N*MAXIT iterations. */
-
- if (jtot < nmaxit) {
- goto L10;
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (e[i__] != 0.) {
- ++(*info);
- }
- /* L150: */
- }
- goto L190;
-
- /* Order eigenvalues and eigenvectors. */
-
- L160:
- if (icompz == 0) {
-
- /* Use Quick Sort */
-
- dlasrt_("I", n, &d__[1], info);
-
- } else {
-
- /* Use Selection Sort to minimize swaps of eigenvectors */
-
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- k = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] < p) {
- k = j;
- p = d__[j];
- }
- /* L170: */
- }
- if (k != i__) {
- d__[k] = d__[i__];
- d__[i__] = p;
- dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
- &c__1);
- }
- /* L180: */
- }
- }
-
- L190:
- return;
-
- /* End of DSTEQR */
-
- } /* dsteqr_ */
|