|
- *> \brief <b> DSPSV computes the solution to system of linear equations A * X = B for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSPSV + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspsv.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspsv.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspsv.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- * INTEGER IPIV( * )
- * DOUBLE PRECISION AP( * ), B( LDB, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSPSV computes the solution to a real system of linear equations
- *> A * X = B,
- *> where A is an N-by-N symmetric matrix stored in packed format and X
- *> and B are N-by-NRHS matrices.
- *>
- *> The diagonal pivoting method is used to factor A as
- *> A = U * D * U**T, if UPLO = 'U', or
- *> A = L * D * L**T, if UPLO = 'L',
- *> where U (or L) is a product of permutation and unit upper (lower)
- *> triangular matrices, D is symmetric and block diagonal with 1-by-1
- *> and 2-by-2 diagonal blocks. The factored form of A is then used to
- *> solve the system of equations A * X = B.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand sides, i.e., the number of columns
- *> of the matrix B. NRHS >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the symmetric matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
- *> See below for further details.
- *>
- *> On exit, the block diagonal matrix D and the multipliers used
- *> to obtain the factor U or L from the factorization
- *> A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
- *> a packed triangular matrix in the same storage format as A.
- *> \endverbatim
- *>
- *> \param[out] IPIV
- *> \verbatim
- *> IPIV is INTEGER array, dimension (N)
- *> Details of the interchanges and the block structure of D, as
- *> determined by DSPTRF. If IPIV(k) > 0, then rows and columns
- *> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
- *> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
- *> then rows and columns k-1 and -IPIV(k) were interchanged and
- *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
- *> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
- *> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
- *> diagonal block.
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
- *> On entry, the N-by-NRHS right hand side matrix B.
- *> On exit, if INFO = 0, the N-by-NRHS solution matrix X.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
- *> has been completed, but the block diagonal matrix D is
- *> exactly singular, so the solution could not be
- *> computed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERsolve
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The packed storage scheme is illustrated by the following example
- *> when N = 4, UPLO = 'U':
- *>
- *> Two-dimensional storage of the symmetric matrix A:
- *>
- *> a11 a12 a13 a14
- *> a22 a23 a24
- *> a33 a34 (aij = aji)
- *> a44
- *>
- *> Packed storage of the upper triangle of A:
- *>
- *> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, LDB, N, NRHS
- * ..
- * .. Array Arguments ..
- INTEGER IPIV( * )
- DOUBLE PRECISION AP( * ), B( LDB, * )
- * ..
- *
- * =====================================================================
- *
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DSPTRF, DSPTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( NRHS.LT.0 ) THEN
- INFO = -3
- ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
- INFO = -7
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSPSV ', -INFO )
- RETURN
- END IF
- *
- * Compute the factorization A = U*D*U**T or A = L*D*L**T.
- *
- CALL DSPTRF( UPLO, N, AP, IPIV, INFO )
- IF( INFO.EQ.0 ) THEN
- *
- * Solve the system A*X = B, overwriting B with X.
- *
- CALL DSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
- *
- END IF
- RETURN
- *
- * End of DSPSV
- *
- END
|