|
- *> \brief \b DSPGST
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSPGST + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgst.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgst.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgst.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER INFO, ITYPE, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION AP( * ), BP( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSPGST reduces a real symmetric-definite generalized eigenproblem
- *> to standard form, using packed storage.
- *>
- *> If ITYPE = 1, the problem is A*x = lambda*B*x,
- *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
- *>
- *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
- *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
- *>
- *> B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ITYPE
- *> \verbatim
- *> ITYPE is INTEGER
- *> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
- *> = 2 or 3: compute U*A*U**T or L**T*A*L.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored and B is factored as
- *> U**T*U;
- *> = 'L': Lower triangle of A is stored and B is factored as
- *> L*L**T.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AP
- *> \verbatim
- *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> On entry, the upper or lower triangle of the symmetric matrix
- *> A, packed columnwise in a linear array. The j-th column of A
- *> is stored in the array AP as follows:
- *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
- *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
- *>
- *> On exit, if INFO = 0, the transformed matrix, stored in the
- *> same format as A.
- *> \endverbatim
- *>
- *> \param[in] BP
- *> \verbatim
- *> BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
- *> The triangular factor from the Cholesky factorization of B,
- *> stored in the same format as A, as returned by DPPTRF.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER INFO, ITYPE, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION AP( * ), BP( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, HALF
- PARAMETER ( ONE = 1.0D0, HALF = 0.5D0 )
- * ..
- * .. Local Scalars ..
- LOGICAL UPPER
- INTEGER J, J1, J1J1, JJ, K, K1, K1K1, KK
- DOUBLE PRECISION AJJ, AKK, BJJ, BKK, CT
- * ..
- * .. External Subroutines ..
- EXTERNAL DAXPY, DSCAL, DSPMV, DSPR2, DTPMV, DTPSV,
- $ XERBLA
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DDOT
- EXTERNAL LSAME, DDOT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- UPPER = LSAME( UPLO, 'U' )
- IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
- INFO = -1
- ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSPGST', -INFO )
- RETURN
- END IF
- *
- IF( ITYPE.EQ.1 ) THEN
- IF( UPPER ) THEN
- *
- * Compute inv(U**T)*A*inv(U)
- *
- * J1 and JJ are the indices of A(1,j) and A(j,j)
- *
- JJ = 0
- DO 10 J = 1, N
- J1 = JJ + 1
- JJ = JJ + J
- *
- * Compute the j-th column of the upper triangle of A
- *
- BJJ = BP( JJ )
- CALL DTPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
- $ AP( J1 ), 1 )
- CALL DSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
- $ AP( J1 ), 1 )
- CALL DSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
- AP( JJ ) = ( AP( JJ )-DDOT( J-1, AP( J1 ), 1, BP( J1 ),
- $ 1 ) ) / BJJ
- 10 CONTINUE
- ELSE
- *
- * Compute inv(L)*A*inv(L**T)
- *
- * KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
- *
- KK = 1
- DO 20 K = 1, N
- K1K1 = KK + N - K + 1
- *
- * Update the lower triangle of A(k:n,k:n)
- *
- AKK = AP( KK )
- BKK = BP( KK )
- AKK = AKK / BKK**2
- AP( KK ) = AKK
- IF( K.LT.N ) THEN
- CALL DSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
- CT = -HALF*AKK
- CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
- CALL DSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
- $ BP( KK+1 ), 1, AP( K1K1 ) )
- CALL DAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
- CALL DTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
- $ BP( K1K1 ), AP( KK+1 ), 1 )
- END IF
- KK = K1K1
- 20 CONTINUE
- END IF
- ELSE
- IF( UPPER ) THEN
- *
- * Compute U*A*U**T
- *
- * K1 and KK are the indices of A(1,k) and A(k,k)
- *
- KK = 0
- DO 30 K = 1, N
- K1 = KK + 1
- KK = KK + K
- *
- * Update the upper triangle of A(1:k,1:k)
- *
- AKK = AP( KK )
- BKK = BP( KK )
- CALL DTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
- $ AP( K1 ), 1 )
- CT = HALF*AKK
- CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
- CALL DSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
- $ AP )
- CALL DAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
- CALL DSCAL( K-1, BKK, AP( K1 ), 1 )
- AP( KK ) = AKK*BKK**2
- 30 CONTINUE
- ELSE
- *
- * Compute L**T *A*L
- *
- * JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
- *
- JJ = 1
- DO 40 J = 1, N
- J1J1 = JJ + N - J + 1
- *
- * Compute the j-th column of the lower triangle of A
- *
- AJJ = AP( JJ )
- BJJ = BP( JJ )
- AP( JJ ) = AJJ*BJJ + DDOT( N-J, AP( JJ+1 ), 1,
- $ BP( JJ+1 ), 1 )
- CALL DSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
- CALL DSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
- $ ONE, AP( JJ+1 ), 1 )
- CALL DTPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
- $ BP( JJ ), AP( JJ ), 1 )
- JJ = J1J1
- 40 CONTINUE
- END IF
- END IF
- RETURN
- *
- * End of DSPGST
- *
- END
|