|
- *> \brief <b> DSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DSBEVD + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevd.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevd.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevd.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
- * LWORK, IWORK, LIWORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBZ, UPLO
- * INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DSBEVD computes all the eigenvalues and, optionally, eigenvectors of
- *> a real symmetric band matrix A. If eigenvectors are desired, it uses
- *> a divide and conquer algorithm.
- *>
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBZ
- *> \verbatim
- *> JOBZ is CHARACTER*1
- *> = 'N': Compute eigenvalues only;
- *> = 'V': Compute eigenvalues and eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] KD
- *> \verbatim
- *> KD is INTEGER
- *> The number of superdiagonals of the matrix A if UPLO = 'U',
- *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] AB
- *> \verbatim
- *> AB is DOUBLE PRECISION array, dimension (LDAB, N)
- *> On entry, the upper or lower triangle of the symmetric band
- *> matrix A, stored in the first KD+1 rows of the array. The
- *> j-th column of A is stored in the j-th column of the array AB
- *> as follows:
- *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
- *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
- *>
- *> On exit, AB is overwritten by values generated during the
- *> reduction to tridiagonal form. If UPLO = 'U', the first
- *> superdiagonal and the diagonal of the tridiagonal matrix T
- *> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
- *> the diagonal and first subdiagonal of T are returned in the
- *> first two rows of AB.
- *> \endverbatim
- *>
- *> \param[in] LDAB
- *> \verbatim
- *> LDAB is INTEGER
- *> The leading dimension of the array AB. LDAB >= KD + 1.
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> If INFO = 0, the eigenvalues in ascending order.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
- *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
- *> eigenvectors of the matrix A, with the i-th column of Z
- *> holding the eigenvector associated with W(i).
- *> If JOBZ = 'N', then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of the array Z. LDZ >= 1, and if
- *> JOBZ = 'V', LDZ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array,
- *> dimension (LWORK)
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> IF N <= 1, LWORK must be at least 1.
- *> If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
- *> If JOBZ = 'V' and N > 2, LWORK must be at least
- *> ( 1 + 5*N + 2*N**2 ).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal sizes of the WORK and IWORK
- *> arrays, returns these values as the first entries of the WORK
- *> and IWORK arrays, and no error message related to LWORK or
- *> LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
- *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
- *> \endverbatim
- *>
- *> \param[in] LIWORK
- *> \verbatim
- *> LIWORK is INTEGER
- *> The dimension of the array IWORK.
- *> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
- *> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
- *>
- *> If LIWORK = -1, then a workspace query is assumed; the
- *> routine only calculates the optimal sizes of the WORK and
- *> IWORK arrays, returns these values as the first entries of
- *> the WORK and IWORK arrays, and no error message related to
- *> LWORK or LIWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> > 0: if INFO = i, the algorithm failed to converge; i
- *> off-diagonal elements of an intermediate tridiagonal
- *> form did not converge to zero.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHEReigen
- *
- * =====================================================================
- SUBROUTINE DSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
- $ LWORK, IWORK, LIWORK, INFO )
- *
- * -- LAPACK driver routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER JOBZ, UPLO
- INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LOWER, LQUERY, WANTZ
- INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
- $ LLWRK2, LWMIN
- DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
- $ SMLNUM
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- DOUBLE PRECISION DLAMCH, DLANSB
- EXTERNAL LSAME, DLAMCH, DLANSB
- * ..
- * .. External Subroutines ..
- EXTERNAL DGEMM, DLACPY, DLASCL, DSBTRD, DSCAL, DSTEDC,
- $ DSTERF, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- WANTZ = LSAME( JOBZ, 'V' )
- LOWER = LSAME( UPLO, 'L' )
- LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
- *
- INFO = 0
- IF( N.LE.1 ) THEN
- LIWMIN = 1
- LWMIN = 1
- ELSE
- IF( WANTZ ) THEN
- LIWMIN = 3 + 5*N
- LWMIN = 1 + 5*N + 2*N**2
- ELSE
- LIWMIN = 1
- LWMIN = 2*N
- END IF
- END IF
- IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
- INFO = -2
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( KD.LT.0 ) THEN
- INFO = -4
- ELSE IF( LDAB.LT.KD+1 ) THEN
- INFO = -6
- ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
- INFO = -9
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- *
- IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -11
- ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
- INFO = -13
- END IF
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DSBEVD', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- IF( N.EQ.1 ) THEN
- W( 1 ) = AB( 1, 1 )
- IF( WANTZ )
- $ Z( 1, 1 ) = ONE
- RETURN
- END IF
- *
- * Get machine constants.
- *
- SAFMIN = DLAMCH( 'Safe minimum' )
- EPS = DLAMCH( 'Precision' )
- SMLNUM = SAFMIN / EPS
- BIGNUM = ONE / SMLNUM
- RMIN = SQRT( SMLNUM )
- RMAX = SQRT( BIGNUM )
- *
- * Scale matrix to allowable range, if necessary.
- *
- ANRM = DLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
- ISCALE = 0
- IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
- ISCALE = 1
- SIGMA = RMIN / ANRM
- ELSE IF( ANRM.GT.RMAX ) THEN
- ISCALE = 1
- SIGMA = RMAX / ANRM
- END IF
- IF( ISCALE.EQ.1 ) THEN
- IF( LOWER ) THEN
- CALL DLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
- ELSE
- CALL DLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
- END IF
- END IF
- *
- * Call DSBTRD to reduce symmetric band matrix to tridiagonal form.
- *
- INDE = 1
- INDWRK = INDE + N
- INDWK2 = INDWRK + N*N
- LLWRK2 = LWORK - INDWK2 + 1
- CALL DSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, WORK( INDE ), Z, LDZ,
- $ WORK( INDWRK ), IINFO )
- *
- * For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
- *
- IF( .NOT.WANTZ ) THEN
- CALL DSTERF( N, W, WORK( INDE ), INFO )
- ELSE
- CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
- $ WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
- CALL DGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
- $ ZERO, WORK( INDWK2 ), N )
- CALL DLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
- END IF
- *
- * If matrix was scaled, then rescale eigenvalues appropriately.
- *
- IF( ISCALE.EQ.1 )
- $ CALL DSCAL( N, ONE / SIGMA, W, 1 )
- *
- WORK( 1 ) = LWMIN
- IWORK( 1 ) = LIWMIN
- RETURN
- *
- * End of DSBEVD
- *
- END
|