|
- *> \brief \b DORGTSQR_ROW
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DORGTSQR_ROW + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgtsqr_row.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgtsqr_row.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgtsqr_row.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
- * $ LWORK, INFO )
- * IMPLICIT NONE
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
- * ..
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DORGTSQR_ROW generates an M-by-N real matrix Q_out with
- *> orthonormal columns from the output of DLATSQR. These N orthonormal
- *> columns are the first N columns of a product of complex unitary
- *> matrices Q(k)_in of order M, which are returned by DLATSQR in
- *> a special format.
- *>
- *> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
- *>
- *> The input matrices Q(k)_in are stored in row and column blocks in A.
- *> See the documentation of DLATSQR for more details on the format of
- *> Q(k)_in, where each Q(k)_in is represented by block Householder
- *> transformations. This routine calls an auxiliary routine DLARFB_GETT,
- *> where the computation is performed on each individual block. The
- *> algorithm first sweeps NB-sized column blocks from the right to left
- *> starting in the bottom row block and continues to the top row block
- *> (hence _ROW in the routine name). This sweep is in reverse order of
- *> the order in which DLATSQR generates the output blocks.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. M >= N >= 0.
- *> \endverbatim
- *>
- *> \param[in] MB
- *> \verbatim
- *> MB is INTEGER
- *> The row block size used by DLATSQR to return
- *> arrays A and T. MB > N.
- *> (Note that if MB > M, then M is used instead of MB
- *> as the row block size).
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER
- *> The column block size used by DLATSQR to return
- *> arrays A and T. NB >= 1.
- *> (Note that if NB > N, then N is used instead of NB
- *> as the column block size).
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *>
- *> On entry:
- *>
- *> The elements on and above the diagonal are not used as
- *> input. The elements below the diagonal represent the unit
- *> lower-trapezoidal blocked matrix V computed by DLATSQR
- *> that defines the input matrices Q_in(k) (ones on the
- *> diagonal are not stored). See DLATSQR for more details.
- *>
- *> On exit:
- *>
- *> The array A contains an M-by-N orthonormal matrix Q_out,
- *> i.e the columns of A are orthogonal unit vectors.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is DOUBLE PRECISION array,
- *> dimension (LDT, N * NIRB)
- *> where NIRB = Number_of_input_row_blocks
- *> = MAX( 1, CEIL((M-N)/(MB-N)) )
- *> Let NICB = Number_of_input_col_blocks
- *> = CEIL(N/NB)
- *>
- *> The upper-triangular block reflectors used to define the
- *> input matrices Q_in(k), k=(1:NIRB*NICB). The block
- *> reflectors are stored in compact form in NIRB block
- *> reflector sequences. Each of the NIRB block reflector
- *> sequences is stored in a larger NB-by-N column block of T
- *> and consists of NICB smaller NB-by-NB upper-triangular
- *> column blocks. See DLATSQR for more details on the format
- *> of T.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T.
- *> LDT >= max(1,min(NB,N)).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> The dimension of the array WORK.
- *> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
- *> where NBLOCAL=MIN(NB,N).
- *> If LWORK = -1, then a workspace query is assumed.
- *> The routine only calculates the optimal size of the WORK
- *> array, returns this value as the first entry of the WORK
- *> array, and no error message related to LWORK is issued
- *> by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *>
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> \verbatim
- *>
- *> November 2020, Igor Kozachenko,
- *> Computer Science Division,
- *> University of California, Berkeley
- *>
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE DORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
- $ LWORK, INFO )
- IMPLICIT NONE
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
- $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
- $ KB, KB_LAST, KNB, MB1
- * ..
- * .. Local Arrays ..
- DOUBLE PRECISION DUMMY( 1, 1 )
- * ..
- * .. External Subroutines ..
- EXTERNAL DLARFB_GETT, DLASET, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- LQUERY = LWORK.EQ.-1
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 .OR. M.LT.N ) THEN
- INFO = -2
- ELSE IF( MB.LE.N ) THEN
- INFO = -3
- ELSE IF( NB.LT.1 ) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
- INFO = -8
- ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
- INFO = -10
- END IF
- *
- NBLOCAL = MIN( NB, N )
- *
- * Determine the workspace size.
- *
- IF( INFO.EQ.0 ) THEN
- LWORKOPT = NBLOCAL * MAX( NBLOCAL, ( N - NBLOCAL ) )
- END IF
- *
- * Handle error in the input parameters and handle the workspace query.
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DORGTSQR_ROW', -INFO )
- RETURN
- ELSE IF ( LQUERY ) THEN
- WORK( 1 ) = DBLE( LWORKOPT )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( MIN( M, N ).EQ.0 ) THEN
- WORK( 1 ) = DBLE( LWORKOPT )
- RETURN
- END IF
- *
- * (0) Set the upper-triangular part of the matrix A to zero and
- * its diagonal elements to one.
- *
- CALL DLASET('U', M, N, ZERO, ONE, A, LDA )
- *
- * KB_LAST is the column index of the last column block reflector
- * in the matrices T and V.
- *
- KB_LAST = ( ( N-1 ) / NBLOCAL ) * NBLOCAL + 1
- *
- *
- * (1) Bottom-up loop over row blocks of A, except the top row block.
- * NOTE: If MB>=M, then the loop is never executed.
- *
- IF ( MB.LT.M ) THEN
- *
- * MB2 is the row blocking size for the row blocks before the
- * first top row block in the matrix A. IB is the row index for
- * the row blocks in the matrix A before the first top row block.
- * IB_BOTTOM is the row index for the last bottom row block
- * in the matrix A. JB_T is the column index of the corresponding
- * column block in the matrix T.
- *
- * Initialize variables.
- *
- * NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
- * including the first row block.
- *
- MB2 = MB - N
- M_PLUS_ONE = M + 1
- ITMP = ( M - MB - 1 ) / MB2
- IB_BOTTOM = ITMP * MB2 + MB + 1
- NUM_ALL_ROW_BLOCKS = ITMP + 2
- JB_T = NUM_ALL_ROW_BLOCKS * N + 1
- *
- DO IB = IB_BOTTOM, MB+1, -MB2
- *
- * Determine the block size IMB for the current row block
- * in the matrix A.
- *
- IMB = MIN( M_PLUS_ONE - IB, MB2 )
- *
- * Determine the column index JB_T for the current column block
- * in the matrix T.
- *
- JB_T = JB_T - N
- *
- * Apply column blocks of H in the row block from right to left.
- *
- * KB is the column index of the current column block reflector
- * in the matrices T and V.
- *
- DO KB = KB_LAST, 1, -NBLOCAL
- *
- * Determine the size of the current column block KNB in
- * the matrices T and V.
- *
- KNB = MIN( NBLOCAL, N - KB + 1 )
- *
- CALL DLARFB_GETT( 'I', IMB, N-KB+1, KNB,
- $ T( 1, JB_T+KB-1 ), LDT, A( KB, KB ), LDA,
- $ A( IB, KB ), LDA, WORK, KNB )
- *
- END DO
- *
- END DO
- *
- END IF
- *
- * (2) Top row block of A.
- * NOTE: If MB>=M, then we have only one row block of A of size M
- * and we work on the entire matrix A.
- *
- MB1 = MIN( MB, M )
- *
- * Apply column blocks of H in the top row block from right to left.
- *
- * KB is the column index of the current block reflector in
- * the matrices T and V.
- *
- DO KB = KB_LAST, 1, -NBLOCAL
- *
- * Determine the size of the current column block KNB in
- * the matrices T and V.
- *
- KNB = MIN( NBLOCAL, N - KB + 1 )
- *
- IF( MB1-KB-KNB+1.EQ.0 ) THEN
- *
- * In SLARFB_GETT parameters, when M=0, then the matrix B
- * does not exist, hence we need to pass a dummy array
- * reference DUMMY(1,1) to B with LDDUMMY=1.
- *
- CALL DLARFB_GETT( 'N', 0, N-KB+1, KNB,
- $ T( 1, KB ), LDT, A( KB, KB ), LDA,
- $ DUMMY( 1, 1 ), 1, WORK, KNB )
- ELSE
- CALL DLARFB_GETT( 'N', MB1-KB-KNB+1, N-KB+1, KNB,
- $ T( 1, KB ), LDT, A( KB, KB ), LDA,
- $ A( KB+KNB, KB), LDA, WORK, KNB )
-
- END IF
- *
- END DO
- *
- WORK( 1 ) = DBLE( LWORKOPT )
- RETURN
- *
- * End of DORGTSQR_ROW
- *
- END
|