|
- *> \brief \b DORGHR
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DORGHR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorghr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorghr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorghr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER IHI, ILO, INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DORGHR generates a real orthogonal matrix Q which is defined as the
- *> product of IHI-ILO elementary reflectors of order N, as returned by
- *> DGEHRD:
- *>
- *> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix Q. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] ILO
- *> \verbatim
- *> ILO is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHI
- *> \verbatim
- *> IHI is INTEGER
- *>
- *> ILO and IHI must have the same values as in the previous call
- *> of DGEHRD. Q is equal to the unit matrix except in the
- *> submatrix Q(ilo+1:ihi,ilo+1:ihi).
- *> 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the vectors which define the elementary reflectors,
- *> as returned by DGEHRD.
- *> On exit, the N-by-N orthogonal matrix Q.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] TAU
- *> \verbatim
- *> TAU is DOUBLE PRECISION array, dimension (N-1)
- *> TAU(i) must contain the scalar factor of the elementary
- *> reflector H(i), as returned by DGEHRD.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK. LWORK >= IHI-ILO.
- *> For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
- *> the optimal blocksize.
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the optimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- * =====================================================================
- SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IHI, ILO, INFO, LDA, LWORK, N
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL LQUERY
- INTEGER I, IINFO, J, LWKOPT, NB, NH
- * ..
- * .. External Subroutines ..
- EXTERNAL DORGQR, XERBLA
- * ..
- * .. External Functions ..
- INTEGER ILAENV
- EXTERNAL ILAENV
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- NH = IHI - ILO
- LQUERY = ( LWORK.EQ.-1 )
- IF( N.LT.0 ) THEN
- INFO = -1
- ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
- INFO = -2
- ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
- INFO = -3
- ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
- INFO = -5
- ELSE IF( LWORK.LT.MAX( 1, NH ) .AND. .NOT.LQUERY ) THEN
- INFO = -8
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- NB = ILAENV( 1, 'DORGQR', ' ', NH, NH, NH, -1 )
- LWKOPT = MAX( 1, NH )*NB
- WORK( 1 ) = LWKOPT
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DORGHR', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 ) THEN
- WORK( 1 ) = 1
- RETURN
- END IF
- *
- * Shift the vectors which define the elementary reflectors one
- * column to the right, and set the first ilo and the last n-ihi
- * rows and columns to those of the unit matrix
- *
- DO 40 J = IHI, ILO + 1, -1
- DO 10 I = 1, J - 1
- A( I, J ) = ZERO
- 10 CONTINUE
- DO 20 I = J + 1, IHI
- A( I, J ) = A( I, J-1 )
- 20 CONTINUE
- DO 30 I = IHI + 1, N
- A( I, J ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- DO 60 J = 1, ILO
- DO 50 I = 1, N
- A( I, J ) = ZERO
- 50 CONTINUE
- A( J, J ) = ONE
- 60 CONTINUE
- DO 80 J = IHI + 1, N
- DO 70 I = 1, N
- A( I, J ) = ZERO
- 70 CONTINUE
- A( J, J ) = ONE
- 80 CONTINUE
- *
- IF( NH.GT.0 ) THEN
- *
- * Generate Q(ilo+1:ihi,ilo+1:ihi)
- *
- CALL DORGQR( NH, NH, NH, A( ILO+1, ILO+1 ), LDA, TAU( ILO ),
- $ WORK, LWORK, IINFO )
- END IF
- WORK( 1 ) = LWKOPT
- RETURN
- *
- * End of DORGHR
- *
- END
|