|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b23 = 1.;
- static doublereal c_b37 = -1.;
-
- /* > \brief \b DLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contrib
- ution to the reciprocal Dif-estimate. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLATDF + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlatdf.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlatdf.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlatdf.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, */
- /* JPIV ) */
-
- /* INTEGER IJOB, LDZ, N */
- /* DOUBLE PRECISION RDSCAL, RDSUM */
- /* INTEGER IPIV( * ), JPIV( * ) */
- /* DOUBLE PRECISION RHS( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLATDF uses the LU factorization of the n-by-n matrix Z computed by */
- /* > DGETC2 and computes a contribution to the reciprocal Dif-estimate */
- /* > by solving Z * x = b for x, and choosing the r.h.s. b such that */
- /* > the norm of x is as large as possible. On entry RHS = b holds the */
- /* > contribution from earlier solved sub-systems, and on return RHS = x. */
- /* > */
- /* > The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q, */
- /* > where P and Q are permutation matrices. L is lower triangular with */
- /* > unit diagonal elements and U is upper triangular. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] IJOB */
- /* > \verbatim */
- /* > IJOB is INTEGER */
- /* > IJOB = 2: First compute an approximative null-vector e */
- /* > of Z using DGECON, e is normalized and solve for */
- /* > Zx = +-e - f with the sign giving the greater value */
- /* > of 2-norm(x). About 5 times as expensive as Default. */
- /* > IJOB .ne. 2: Local look ahead strategy where all entries of */
- /* > the r.h.s. b is chosen as either +1 or -1 (Default). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the matrix Z. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension (LDZ, N) */
- /* > On entry, the LU part of the factorization of the n-by-n */
- /* > matrix Z computed by DGETC2: Z = P * L * U * Q */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDA >= f2cmax(1, N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] RHS */
- /* > \verbatim */
- /* > RHS is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, RHS contains contributions from other subsystems. */
- /* > On exit, RHS contains the solution of the subsystem with */
- /* > entries according to the value of IJOB (see above). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] RDSUM */
- /* > \verbatim */
- /* > RDSUM is DOUBLE PRECISION */
- /* > On entry, the sum of squares of computed contributions to */
- /* > the Dif-estimate under computation by DTGSYL, where the */
- /* > scaling factor RDSCAL (see below) has been factored out. */
- /* > On exit, the corresponding sum of squares updated with the */
- /* > contributions from the current sub-system. */
- /* > If TRANS = 'T' RDSUM is not touched. */
- /* > NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] RDSCAL */
- /* > \verbatim */
- /* > RDSCAL is DOUBLE PRECISION */
- /* > On entry, scaling factor used to prevent overflow in RDSUM. */
- /* > On exit, RDSCAL is updated w.r.t. the current contributions */
- /* > in RDSUM. */
- /* > If TRANS = 'T', RDSCAL is not touched. */
- /* > NOTE: RDSCAL only makes sense when DTGSY2 is called by */
- /* > DTGSYL. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N). */
- /* > The pivot indices; for 1 <= i <= N, row i of the */
- /* > matrix has been interchanged with row IPIV(i). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JPIV */
- /* > \verbatim */
- /* > JPIV is INTEGER array, dimension (N). */
- /* > The pivot indices; for 1 <= j <= N, column j of the */
- /* > matrix has been interchanged with column JPIV(j). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup doubleOTHERauxiliary */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > This routine is a further developed implementation of algorithm */
- /* > BSOLVE in [1] using complete pivoting in the LU factorization. */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
- /* > Umea University, S-901 87 Umea, Sweden. */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > \verbatim */
- /* > */
- /* > */
- /* > [1] Bo Kagstrom and Lars Westin, */
- /* > Generalized Schur Methods with Condition Estimators for */
- /* > Solving the Generalized Sylvester Equation, IEEE Transactions */
- /* > on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */
- /* > */
- /* > [2] Peter Poromaa, */
- /* > On Efficient and Robust Estimators for the Separation */
- /* > between two Regular Matrix Pairs with Applications in */
- /* > Condition Estimation. Report IMINF-95.05, Departement of */
- /* > Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dlatdf_(integer *ijob, integer *n, doublereal *z__,
- integer *ldz, doublereal *rhs, doublereal *rdsum, doublereal *rdscal,
- integer *ipiv, integer *jpiv)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2;
- doublereal d__1;
-
- /* Local variables */
- extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- integer info;
- doublereal temp, work[32];
- integer i__, j, k;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern doublereal dasum_(integer *, doublereal *, integer *);
- doublereal pmone;
- extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), daxpy_(integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *);
- doublereal sminu;
- integer iwork[8];
- doublereal splus;
- extern /* Subroutine */ void dgesc2_(integer *, doublereal *, integer *,
- doublereal *, integer *, integer *, doublereal *);
- doublereal bm, bp;
- extern /* Subroutine */ void dgecon_(char *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- integer *);
- doublereal xm[8], xp[8];
- extern /* Subroutine */ void dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
- extern int dlaswp_(integer *, doublereal *,
- integer *, integer *, integer *, integer *, integer *);
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --rhs;
- --ipiv;
- --jpiv;
-
- /* Function Body */
- if (*ijob != 2) {
-
- /* Apply permutations IPIV to RHS */
-
- i__1 = *n - 1;
- dlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);
-
- /* Solve for L-part choosing RHS either to +1 or -1. */
-
- pmone = -1.;
-
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- bp = rhs[j] + 1.;
- bm = rhs[j] - 1.;
- splus = 1.;
-
- /* Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and */
- /* SMIN computed more efficiently than in BSOLVE [1]. */
-
- i__2 = *n - j;
- splus += ddot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1
- + j * z_dim1], &c__1);
- i__2 = *n - j;
- sminu = ddot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
- &c__1);
- splus *= rhs[j];
- if (splus > sminu) {
- rhs[j] = bp;
- } else if (sminu > splus) {
- rhs[j] = bm;
- } else {
-
- /* In this case the updating sums are equal and we can */
- /* choose RHS(J) +1 or -1. The first time this happens */
- /* we choose -1, thereafter +1. This is a simple way to */
- /* get good estimates of matrices like Byers well-known */
- /* example (see [1]). (Not done in BSOLVE.) */
-
- rhs[j] += pmone;
- pmone = 1.;
- }
-
- /* Compute the remaining r.h.s. */
-
- temp = -rhs[j];
- i__2 = *n - j;
- daxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1],
- &c__1);
-
- /* L10: */
- }
-
- /* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done */
- /* in BSOLVE and will hopefully give us a better estimate because */
- /* any ill-conditioning of the original matrix is transferred to U */
- /* and not to L. U(N, N) is an approximation to sigma_min(LU). */
-
- i__1 = *n - 1;
- dcopy_(&i__1, &rhs[1], &c__1, xp, &c__1);
- xp[*n - 1] = rhs[*n] + 1.;
- rhs[*n] += -1.;
- splus = 0.;
- sminu = 0.;
- for (i__ = *n; i__ >= 1; --i__) {
- temp = 1. / z__[i__ + i__ * z_dim1];
- xp[i__ - 1] *= temp;
- rhs[i__] *= temp;
- i__1 = *n;
- for (k = i__ + 1; k <= i__1; ++k) {
- xp[i__ - 1] -= xp[k - 1] * (z__[i__ + k * z_dim1] * temp);
- rhs[i__] -= rhs[k] * (z__[i__ + k * z_dim1] * temp);
- /* L20: */
- }
- splus += (d__1 = xp[i__ - 1], abs(d__1));
- sminu += (d__1 = rhs[i__], abs(d__1));
- /* L30: */
- }
- if (splus > sminu) {
- dcopy_(n, xp, &c__1, &rhs[1], &c__1);
- }
-
- /* Apply the permutations JPIV to the computed solution (RHS) */
-
- i__1 = *n - 1;
- dlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);
-
- /* Compute the sum of squares */
-
- dlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
-
- } else {
-
- /* IJOB = 2, Compute approximate nullvector XM of Z */
-
- dgecon_("I", n, &z__[z_offset], ldz, &c_b23, &temp, work, iwork, &
- info);
- dcopy_(n, &work[*n], &c__1, xm, &c__1);
-
- /* Compute RHS */
-
- i__1 = *n - 1;
- dlaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
- temp = 1. / sqrt(ddot_(n, xm, &c__1, xm, &c__1));
- dscal_(n, &temp, xm, &c__1);
- dcopy_(n, xm, &c__1, xp, &c__1);
- daxpy_(n, &c_b23, &rhs[1], &c__1, xp, &c__1);
- daxpy_(n, &c_b37, xm, &c__1, &rhs[1], &c__1);
- dgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &temp);
- dgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &temp);
- if (dasum_(n, xp, &c__1) > dasum_(n, &rhs[1], &c__1)) {
- dcopy_(n, xp, &c__1, &rhs[1], &c__1);
- }
-
- /* Compute the sum of squares */
-
- dlassq_(n, &rhs[1], &c__1, rdscal, rdsum);
-
- }
-
- return;
-
- /* End of DLATDF */
-
- } /* dlatdf_ */
|