|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static doublereal c_b8 = -1.;
- static doublereal c_b9 = 1.;
-
- /* > \brief \b DLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diag
- onal pivoting method. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLASYF + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
-
- /* CHARACTER UPLO */
- /* INTEGER INFO, KB, LDA, LDW, N, NB */
- /* INTEGER IPIV( * ) */
- /* DOUBLE PRECISION A( LDA, * ), W( LDW, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLASYF computes a partial factorization of a real symmetric matrix A */
- /* > using the Bunch-Kaufman diagonal pivoting method. The partial */
- /* > factorization has the form: */
- /* > */
- /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
- /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
- /* > */
- /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' */
- /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
- /* > */
- /* > where the order of D is at most NB. The actual order is returned in */
- /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
- /* > */
- /* > DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code */
- /* > (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
- /* > A22 (if UPLO = 'L'). */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > Specifies whether the upper or lower triangular part of the */
- /* > symmetric matrix A is stored: */
- /* > = 'U': Upper triangular */
- /* > = 'L': Lower triangular */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NB */
- /* > \verbatim */
- /* > NB is INTEGER */
- /* > The maximum number of columns of the matrix A that should be */
- /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
- /* > blocks. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] KB */
- /* > \verbatim */
- /* > KB is INTEGER */
- /* > The number of columns of A that were actually factored. */
- /* > KB is either NB-1 or NB, or N if N <= NB. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
- /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* > n-by-n upper triangular part of A contains the upper */
- /* > triangular part of the matrix A, and the strictly lower */
- /* > triangular part of A is not referenced. If UPLO = 'L', the */
- /* > leading n-by-n lower triangular part of A contains the lower */
- /* > triangular part of the matrix A, and the strictly upper */
- /* > triangular part of A is not referenced. */
- /* > On exit, A contains details of the partial factorization. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IPIV */
- /* > \verbatim */
- /* > IPIV is INTEGER array, dimension (N) */
- /* > Details of the interchanges and the block structure of D. */
- /* > */
- /* > If UPLO = 'U': */
- /* > Only the last KB elements of IPIV are set. */
- /* > */
- /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
- /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
- /* > */
- /* > If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
- /* > k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
- /* > is a 2-by-2 diagonal block. */
- /* > */
- /* > If UPLO = 'L': */
- /* > Only the first KB elements of IPIV are set. */
- /* > */
- /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
- /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
- /* > */
- /* > If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
- /* > k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
- /* > is a 2-by-2 diagonal block. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] W */
- /* > \verbatim */
- /* > W is DOUBLE PRECISION array, dimension (LDW,NB) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDW */
- /* > \verbatim */
- /* > LDW is INTEGER */
- /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
- /* > has been completed, but the block diagonal matrix D is */
- /* > exactly singular. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2013 */
-
- /* > \ingroup doubleSYcomputational */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > November 2013, Igor Kozachenko, */
- /* > Computer Science Division, */
- /* > University of California, Berkeley */
- /* > \endverbatim */
-
- /* ===================================================================== */
- /* Subroutine */ void dlasyf_(char *uplo, integer *n, integer *nb, integer *kb,
- doublereal *a, integer *lda, integer *ipiv, doublereal *w, integer *
- ldw, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3;
-
- /* Local variables */
- integer imax, jmax, j, k;
- doublereal t, alpha;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *), dgemm_(char *, char *, integer *, integer *, integer *
- , doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), dcopy_(integer *,
- doublereal *, integer *, doublereal *, integer *), dswap_(integer
- *, doublereal *, integer *, doublereal *, integer *);
- integer kstep;
- doublereal r1, d11, d21, d22;
- integer jb, jj, kk, jp, kp;
- doublereal absakk;
- integer kw;
- extern integer idamax_(integer *, doublereal *, integer *);
- doublereal colmax, rowmax;
- integer kkw;
-
-
- /* -- LAPACK computational routine (version 3.5.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2013 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --ipiv;
- w_dim1 = *ldw;
- w_offset = 1 + w_dim1 * 1;
- w -= w_offset;
-
- /* Function Body */
- *info = 0;
-
- /* Initialize ALPHA for use in choosing pivot block size. */
-
- alpha = (sqrt(17.) + 1.) / 8.;
-
- if (lsame_(uplo, "U")) {
-
- /* Factorize the trailing columns of A using the upper triangle */
- /* of A and working backwards, and compute the matrix W = U12*D */
- /* for use in updating A11 */
-
- /* K is the main loop index, decreasing from N in steps of 1 or 2 */
-
- /* KW is the column of W which corresponds to column K of A */
-
- k = *n;
- L10:
- kw = *nb + k - *n;
-
- /* Exit from loop */
-
- if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
- goto L30;
- }
-
- /* Copy column K of A to column KW of W and update it */
-
- dcopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
- if (k < *n) {
- i__1 = *n - k;
- dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * a_dim1 + 1],
- lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b9, &w[kw *
- w_dim1 + 1], &c__1);
- }
-
- kstep = 1;
-
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
-
- absakk = (d__1 = w[k + kw * w_dim1], abs(d__1));
-
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value. */
- /* Determine both COLMAX and IMAX. */
-
- if (k > 1) {
- i__1 = k - 1;
- imax = idamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
- colmax = (d__1 = w[imax + kw * w_dim1], abs(d__1));
- } else {
- colmax = 0.;
- }
-
- if (f2cmax(absakk,colmax) == 0.) {
-
- /* Column K is zero or underflow: set INFO and continue */
-
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- } else {
- if (absakk >= alpha * colmax) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
- } else {
-
- /* Copy column IMAX to column KW-1 of W and update it */
-
- dcopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
- w_dim1 + 1], &c__1);
- i__1 = k - imax;
- dcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
- 1 + (kw - 1) * w_dim1], &c__1);
- if (k < *n) {
- i__1 = *n - k;
- dgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) *
- a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
- ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);
- }
-
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value */
-
- i__1 = k - imax;
- jmax = imax + idamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1],
- &c__1);
- rowmax = (d__1 = w[jmax + (kw - 1) * w_dim1], abs(d__1));
- if (imax > 1) {
- i__1 = imax - 1;
- jmax = idamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
- /* Computing MAX */
- d__2 = rowmax, d__3 = (d__1 = w[jmax + (kw - 1) * w_dim1],
- abs(d__1));
- rowmax = f2cmax(d__2,d__3);
- }
-
- if (absakk >= alpha * colmax * (colmax / rowmax)) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
- } else if ((d__1 = w[imax + (kw - 1) * w_dim1], abs(d__1)) >=
- alpha * rowmax) {
-
- /* interchange rows and columns K and IMAX, use 1-by-1 */
- /* pivot block */
-
- kp = imax;
-
- /* copy column KW-1 of W to column KW of W */
-
- dcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
- w_dim1 + 1], &c__1);
- } else {
-
- /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
- /* pivot block */
-
- kp = imax;
- kstep = 2;
- }
- }
-
- /* ============================================================ */
-
- /* KK is the column of A where pivoting step stopped */
-
- kk = k - kstep + 1;
-
- /* KKW is the column of W which corresponds to column KK of A */
-
- kkw = *nb + kk - *n;
-
- /* Interchange rows and columns KP and KK. */
- /* Updated column KP is already stored in column KKW of W. */
-
- if (kp != kk) {
-
- /* Copy non-updated column KK to column KP of submatrix A */
- /* at step K. No need to copy element into column K */
- /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
- /* will be later overwritten. */
-
- a[kp + kp * a_dim1] = a[kk + kk * a_dim1];
- i__1 = kk - 1 - kp;
- dcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
- 1) * a_dim1], lda);
- if (kp > 1) {
- i__1 = kp - 1;
- dcopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
- + 1], &c__1);
- }
-
- /* Interchange rows KK and KP in last K+1 to N columns of A */
- /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
- /* later overwritten). Interchange rows KK and KP */
- /* in last KKW to NB columns of W. */
-
- if (k < *n) {
- i__1 = *n - k;
- dswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
- + 1) * a_dim1], lda);
- }
- i__1 = *n - kk + 1;
- dswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
- w_dim1], ldw);
- }
-
- if (kstep == 1) {
-
- /* 1-by-1 pivot block D(k): column kw of W now holds */
-
- /* W(kw) = U(k)*D(k), */
-
- /* where U(k) is the k-th column of U */
-
- /* Store subdiag. elements of column U(k) */
- /* and 1-by-1 block D(k) in column k of A. */
- /* NOTE: Diagonal element U(k,k) is a UNIT element */
- /* and not stored. */
- /* A(k,k) := D(k,k) = W(k,kw) */
- /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
-
- dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
- c__1);
- r1 = 1. / a[k + k * a_dim1];
- i__1 = k - 1;
- dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
-
- } else {
-
- /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
-
- /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
-
- /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
- /* of U */
-
- /* Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
- /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
- /* NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
- /* block and not stored. */
- /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
- /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
- /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
-
- if (k > 2) {
-
- /* Compose the columns of the inverse of 2-by-2 pivot */
- /* block D in the following way to reduce the number */
- /* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by */
- /* this inverse */
-
- /* D**(-1) = ( d11 d21 )**(-1) = */
- /* ( d21 d22 ) */
-
- /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
- /* ( (-d21 ) ( d11 ) ) */
-
- /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
-
- /* * ( ( d22/d21 ) ( -1 ) ) = */
- /* ( ( -1 ) ( d11/d21 ) ) */
-
- /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
- /* ( ( -1 ) ( D22 ) ) */
-
- /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
- /* ( ( -1 ) ( D22 ) ) */
-
- /* = D21 * ( ( D11 ) ( -1 ) ) */
- /* ( ( -1 ) ( D22 ) ) */
-
- d21 = w[k - 1 + kw * w_dim1];
- d11 = w[k + kw * w_dim1] / d21;
- d22 = w[k - 1 + (kw - 1) * w_dim1] / d21;
- t = 1. / (d11 * d22 - 1.);
- d21 = t / d21;
-
- /* Update elements in columns A(k-1) and A(k) as */
- /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
- /* of D**(-1) */
-
- i__1 = k - 2;
- for (j = 1; j <= i__1; ++j) {
- a[j + (k - 1) * a_dim1] = d21 * (d11 * w[j + (kw - 1)
- * w_dim1] - w[j + kw * w_dim1]);
- a[j + k * a_dim1] = d21 * (d22 * w[j + kw * w_dim1] -
- w[j + (kw - 1) * w_dim1]);
- /* L20: */
- }
- }
-
- /* Copy D(k) to A */
-
- a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];
- a[k - 1 + k * a_dim1] = w[k - 1 + kw * w_dim1];
- a[k + k * a_dim1] = w[k + kw * w_dim1];
-
- }
-
- }
-
- /* Store details of the interchanges in IPIV */
-
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -kp;
- ipiv[k - 1] = -kp;
- }
-
- /* Decrease K and return to the start of the main loop */
-
- k -= kstep;
- goto L10;
-
- L30:
-
- /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
-
- /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
-
- /* computing blocks of NB columns at a time */
-
- i__1 = -(*nb);
- for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
- i__1) {
- /* Computing MIN */
- i__2 = *nb, i__3 = k - j + 1;
- jb = f2cmin(i__2,i__3);
-
- /* Update the upper triangle of the diagonal block */
-
- i__2 = j + jb - 1;
- for (jj = j; jj <= i__2; ++jj) {
- i__3 = jj - j + 1;
- i__4 = *n - k;
- dgemv_("No transpose", &i__3, &i__4, &c_b8, &a[j + (k + 1) *
- a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b9,
- &a[j + jj * a_dim1], &c__1);
- /* L40: */
- }
-
- /* Update the rectangular superdiagonal block */
-
- i__2 = j - 1;
- i__3 = *n - k;
- dgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b8, &a[(
- k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw,
- &c_b9, &a[j * a_dim1 + 1], lda);
- /* L50: */
- }
-
- /* Put U12 in standard form by partially undoing the interchanges */
- /* in columns k+1:n looping backwards from k+1 to n */
-
- j = k + 1;
- L60:
-
- /* Undo the interchanges (if any) of rows JJ and JP at each */
- /* step J */
-
- /* (Here, J is a diagonal index) */
- jj = j;
- jp = ipiv[j];
- if (jp < 0) {
- jp = -jp;
- /* (Here, J is a diagonal index) */
- ++j;
- }
- /* (NOTE: Here, J is used to determine row length. Length N-J+1 */
- /* of the rows to swap back doesn't include diagonal element) */
- ++j;
- if (jp != jj && j <= *n) {
- i__1 = *n - j + 1;
- dswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);
- }
- if (j < *n) {
- goto L60;
- }
-
- /* Set KB to the number of columns factorized */
-
- *kb = *n - k;
-
- } else {
-
- /* Factorize the leading columns of A using the lower triangle */
- /* of A and working forwards, and compute the matrix W = L21*D */
- /* for use in updating A22 */
-
- /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
-
- k = 1;
- L70:
-
- /* Exit from loop */
-
- if (k >= *nb && *nb < *n || k > *n) {
- goto L90;
- }
-
- /* Copy column K of A to column K of W and update it */
-
- i__1 = *n - k + 1;
- dcopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
- i__1 = *n - k + 1;
- i__2 = k - 1;
- dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], lda, &w[k
- + w_dim1], ldw, &c_b9, &w[k + k * w_dim1], &c__1);
-
- kstep = 1;
-
- /* Determine rows and columns to be interchanged and whether */
- /* a 1-by-1 or 2-by-2 pivot block will be used */
-
- absakk = (d__1 = w[k + k * w_dim1], abs(d__1));
-
- /* IMAX is the row-index of the largest off-diagonal element in */
- /* column K, and COLMAX is its absolute value. */
- /* Determine both COLMAX and IMAX. */
-
- if (k < *n) {
- i__1 = *n - k;
- imax = k + idamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
- colmax = (d__1 = w[imax + k * w_dim1], abs(d__1));
- } else {
- colmax = 0.;
- }
-
- if (f2cmax(absakk,colmax) == 0.) {
-
- /* Column K is zero or underflow: set INFO and continue */
-
- if (*info == 0) {
- *info = k;
- }
- kp = k;
- } else {
- if (absakk >= alpha * colmax) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
- } else {
-
- /* Copy column IMAX to column K+1 of W and update it */
-
- i__1 = imax - k;
- dcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
- w_dim1], &c__1);
- i__1 = *n - imax + 1;
- dcopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
- 1) * w_dim1], &c__1);
- i__1 = *n - k + 1;
- i__2 = k - 1;
- dgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1],
- lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) *
- w_dim1], &c__1);
-
- /* JMAX is the column-index of the largest off-diagonal */
- /* element in row IMAX, and ROWMAX is its absolute value */
-
- i__1 = imax - k;
- jmax = k - 1 + idamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
- ;
- rowmax = (d__1 = w[jmax + (k + 1) * w_dim1], abs(d__1));
- if (imax < *n) {
- i__1 = *n - imax;
- jmax = imax + idamax_(&i__1, &w[imax + 1 + (k + 1) *
- w_dim1], &c__1);
- /* Computing MAX */
- d__2 = rowmax, d__3 = (d__1 = w[jmax + (k + 1) * w_dim1],
- abs(d__1));
- rowmax = f2cmax(d__2,d__3);
- }
-
- if (absakk >= alpha * colmax * (colmax / rowmax)) {
-
- /* no interchange, use 1-by-1 pivot block */
-
- kp = k;
- } else if ((d__1 = w[imax + (k + 1) * w_dim1], abs(d__1)) >=
- alpha * rowmax) {
-
- /* interchange rows and columns K and IMAX, use 1-by-1 */
- /* pivot block */
-
- kp = imax;
-
- /* copy column K+1 of W to column K of W */
-
- i__1 = *n - k + 1;
- dcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
- w_dim1], &c__1);
- } else {
-
- /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
- /* pivot block */
-
- kp = imax;
- kstep = 2;
- }
- }
-
- /* ============================================================ */
-
- /* KK is the column of A where pivoting step stopped */
-
- kk = k + kstep - 1;
-
- /* Interchange rows and columns KP and KK. */
- /* Updated column KP is already stored in column KK of W. */
-
- if (kp != kk) {
-
- /* Copy non-updated column KK to column KP of submatrix A */
- /* at step K. No need to copy element into column K */
- /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
- /* will be later overwritten. */
-
- a[kp + kp * a_dim1] = a[kk + kk * a_dim1];
- i__1 = kp - kk - 1;
- dcopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
- 1) * a_dim1], lda);
- if (kp < *n) {
- i__1 = *n - kp;
- dcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
- + kp * a_dim1], &c__1);
- }
-
- /* Interchange rows KK and KP in first K-1 columns of A */
- /* (columns K (or K and K+1 for 2-by-2 pivot) of A will be */
- /* later overwritten). Interchange rows KK and KP */
- /* in first KK columns of W. */
-
- if (k > 1) {
- i__1 = k - 1;
- dswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
- }
- dswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
- }
-
- if (kstep == 1) {
-
- /* 1-by-1 pivot block D(k): column k of W now holds */
-
- /* W(k) = L(k)*D(k), */
-
- /* where L(k) is the k-th column of L */
-
- /* Store subdiag. elements of column L(k) */
- /* and 1-by-1 block D(k) in column k of A. */
- /* (NOTE: Diagonal element L(k,k) is a UNIT element */
- /* and not stored) */
- /* A(k,k) := D(k,k) = W(k,k) */
- /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
-
- i__1 = *n - k + 1;
- dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
- c__1);
- if (k < *n) {
- r1 = 1. / a[k + k * a_dim1];
- i__1 = *n - k;
- dscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
- }
-
- } else {
-
- /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
-
- /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
-
- /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
- /* of L */
-
- /* Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
- /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
- /* (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
- /* block and not stored) */
- /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
- /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
- /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
-
- if (k < *n - 1) {
-
- /* Compose the columns of the inverse of 2-by-2 pivot */
- /* block D in the following way to reduce the number */
- /* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by */
- /* this inverse */
-
- /* D**(-1) = ( d11 d21 )**(-1) = */
- /* ( d21 d22 ) */
-
- /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
- /* ( (-d21 ) ( d11 ) ) */
-
- /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
-
- /* * ( ( d22/d21 ) ( -1 ) ) = */
- /* ( ( -1 ) ( d11/d21 ) ) */
-
- /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
- /* ( ( -1 ) ( D22 ) ) */
-
- /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
- /* ( ( -1 ) ( D22 ) ) */
-
- /* = D21 * ( ( D11 ) ( -1 ) ) */
- /* ( ( -1 ) ( D22 ) ) */
-
- d21 = w[k + 1 + k * w_dim1];
- d11 = w[k + 1 + (k + 1) * w_dim1] / d21;
- d22 = w[k + k * w_dim1] / d21;
- t = 1. / (d11 * d22 - 1.);
- d21 = t / d21;
-
- /* Update elements in columns A(k) and A(k+1) as */
- /* dot products of rows of ( W(k) W(k+1) ) and columns */
- /* of D**(-1) */
-
- i__1 = *n;
- for (j = k + 2; j <= i__1; ++j) {
- a[j + k * a_dim1] = d21 * (d11 * w[j + k * w_dim1] -
- w[j + (k + 1) * w_dim1]);
- a[j + (k + 1) * a_dim1] = d21 * (d22 * w[j + (k + 1) *
- w_dim1] - w[j + k * w_dim1]);
- /* L80: */
- }
- }
-
- /* Copy D(k) to A */
-
- a[k + k * a_dim1] = w[k + k * w_dim1];
- a[k + 1 + k * a_dim1] = w[k + 1 + k * w_dim1];
- a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];
-
- }
-
- }
-
- /* Store details of the interchanges in IPIV */
-
- if (kstep == 1) {
- ipiv[k] = kp;
- } else {
- ipiv[k] = -kp;
- ipiv[k + 1] = -kp;
- }
-
- /* Increase K and return to the start of the main loop */
-
- k += kstep;
- goto L70;
-
- L90:
-
- /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
-
- /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
-
- /* computing blocks of NB columns at a time */
-
- i__1 = *n;
- i__2 = *nb;
- for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
- /* Computing MIN */
- i__3 = *nb, i__4 = *n - j + 1;
- jb = f2cmin(i__3,i__4);
-
- /* Update the lower triangle of the diagonal block */
-
- i__3 = j + jb - 1;
- for (jj = j; jj <= i__3; ++jj) {
- i__4 = j + jb - jj;
- i__5 = k - 1;
- dgemv_("No transpose", &i__4, &i__5, &c_b8, &a[jj + a_dim1],
- lda, &w[jj + w_dim1], ldw, &c_b9, &a[jj + jj * a_dim1]
- , &c__1);
- /* L100: */
- }
-
- /* Update the rectangular subdiagonal block */
-
- if (j + jb <= *n) {
- i__3 = *n - j - jb + 1;
- i__4 = k - 1;
- dgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b8,
- &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b9,
- &a[j + jb + j * a_dim1], lda);
- }
- /* L110: */
- }
-
- /* Put L21 in standard form by partially undoing the interchanges */
- /* of rows in columns 1:k-1 looping backwards from k-1 to 1 */
-
- j = k - 1;
- L120:
-
- /* Undo the interchanges (if any) of rows JJ and JP at each */
- /* step J */
-
- /* (Here, J is a diagonal index) */
- jj = j;
- jp = ipiv[j];
- if (jp < 0) {
- jp = -jp;
- /* (Here, J is a diagonal index) */
- --j;
- }
- /* (NOTE: Here, J is used to determine row length. Length J */
- /* of the rows to swap back doesn't include diagonal element) */
- --j;
- if (jp != jj && j >= 1) {
- dswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);
- }
- if (j > 1) {
- goto L120;
- }
-
- /* Set KB to the number of columns factorized */
-
- *kb = k - 1;
-
- }
- return;
-
- /* End of DLASYF */
-
- } /* dlasyf_ */
|