|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__4 = 4;
- static integer c__1 = 1;
- static integer c__16 = 16;
- static integer c__0 = 0;
-
- /* > \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLASY2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasy2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasy2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasy2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR, */
- /* LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO ) */
-
- /* LOGICAL LTRANL, LTRANR */
- /* INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2 */
- /* DOUBLE PRECISION SCALE, XNORM */
- /* DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ), */
- /* $ X( LDX, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in */
- /* > */
- /* > op(TL)*X + ISGN*X*op(TR) = SCALE*B, */
- /* > */
- /* > where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or */
- /* > -1. op(T) = T or T**T, where T**T denotes the transpose of T. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] LTRANL */
- /* > \verbatim */
- /* > LTRANL is LOGICAL */
- /* > On entry, LTRANL specifies the op(TL): */
- /* > = .FALSE., op(TL) = TL, */
- /* > = .TRUE., op(TL) = TL**T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LTRANR */
- /* > \verbatim */
- /* > LTRANR is LOGICAL */
- /* > On entry, LTRANR specifies the op(TR): */
- /* > = .FALSE., op(TR) = TR, */
- /* > = .TRUE., op(TR) = TR**T. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ISGN */
- /* > \verbatim */
- /* > ISGN is INTEGER */
- /* > On entry, ISGN specifies the sign of the equation */
- /* > as described before. ISGN may only be 1 or -1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N1 */
- /* > \verbatim */
- /* > N1 is INTEGER */
- /* > On entry, N1 specifies the order of matrix TL. */
- /* > N1 may only be 0, 1 or 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N2 */
- /* > \verbatim */
- /* > N2 is INTEGER */
- /* > On entry, N2 specifies the order of matrix TR. */
- /* > N2 may only be 0, 1 or 2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TL */
- /* > \verbatim */
- /* > TL is DOUBLE PRECISION array, dimension (LDTL,2) */
- /* > On entry, TL contains an N1 by N1 matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDTL */
- /* > \verbatim */
- /* > LDTL is INTEGER */
- /* > The leading dimension of the matrix TL. LDTL >= f2cmax(1,N1). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TR */
- /* > \verbatim */
- /* > TR is DOUBLE PRECISION array, dimension (LDTR,2) */
- /* > On entry, TR contains an N2 by N2 matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDTR */
- /* > \verbatim */
- /* > LDTR is INTEGER */
- /* > The leading dimension of the matrix TR. LDTR >= f2cmax(1,N2). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB,2) */
- /* > On entry, the N1 by N2 matrix B contains the right-hand */
- /* > side of the equation. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the matrix B. LDB >= f2cmax(1,N1). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE */
- /* > \verbatim */
- /* > SCALE is DOUBLE PRECISION */
- /* > On exit, SCALE contains the scale factor. SCALE is chosen */
- /* > less than or equal to 1 to prevent the solution overflowing. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is DOUBLE PRECISION array, dimension (LDX,2) */
- /* > On exit, X contains the N1 by N2 solution. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of the matrix X. LDX >= f2cmax(1,N1). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] XNORM */
- /* > \verbatim */
- /* > XNORM is DOUBLE PRECISION */
- /* > On exit, XNORM is the infinity-norm of the solution. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > On exit, INFO is set to */
- /* > 0: successful exit. */
- /* > 1: TL and TR have too close eigenvalues, so TL or */
- /* > TR is perturbed to get a nonsingular equation. */
- /* > NOTE: In the interests of speed, this routine does not */
- /* > check the inputs for errors. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup doubleSYauxiliary */
-
- /* ===================================================================== */
- /* Subroutine */ void dlasy2_(logical *ltranl, logical *ltranr, integer *isgn,
- integer *n1, integer *n2, doublereal *tl, integer *ldtl, doublereal *
- tr, integer *ldtr, doublereal *b, integer *ldb, doublereal *scale,
- doublereal *x, integer *ldx, doublereal *xnorm, integer *info)
- {
- /* Initialized data */
-
- static integer locu12[4] = { 3,4,1,2 };
- static integer locl21[4] = { 2,1,4,3 };
- static integer locu22[4] = { 4,3,2,1 };
- static logical xswpiv[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
- static logical bswpiv[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
-
- /* System generated locals */
- integer b_dim1, b_offset, tl_dim1, tl_offset, tr_dim1, tr_offset, x_dim1,
- x_offset;
- doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;
-
- /* Local variables */
- doublereal btmp[4], smin;
- integer ipiv;
- doublereal temp;
- integer jpiv[4];
- doublereal xmax;
- integer ipsv, jpsv, i__, j, k;
- logical bswap;
- extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), dswap_(integer *, doublereal *, integer
- *, doublereal *, integer *);
- logical xswap;
- doublereal x2[2], l21, u11, u12;
- integer ip, jp;
- doublereal u22, t16[16] /* was [4][4] */;
- extern doublereal dlamch_(char *);
- extern integer idamax_(integer *, doublereal *, integer *);
- doublereal smlnum, gam, bet, eps, sgn, tmp[4], tau1;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
- /* Parameter adjustments */
- tl_dim1 = *ldtl;
- tl_offset = 1 + tl_dim1 * 1;
- tl -= tl_offset;
- tr_dim1 = *ldtr;
- tr_offset = 1 + tr_dim1 * 1;
- tr -= tr_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
-
- /* Function Body */
-
- /* Do not check the input parameters for errors */
-
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n1 == 0 || *n2 == 0) {
- return;
- }
-
- /* Set constants to control overflow */
-
- eps = dlamch_("P");
- smlnum = dlamch_("S") / eps;
- sgn = (doublereal) (*isgn);
-
- k = *n1 + *n1 + *n2 - 2;
- switch (k) {
- case 1: goto L10;
- case 2: goto L20;
- case 3: goto L30;
- case 4: goto L50;
- }
-
- /* 1 by 1: TL11*X + SGN*X*TR11 = B11 */
-
- L10:
- tau1 = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
- bet = abs(tau1);
- if (bet <= smlnum) {
- tau1 = smlnum;
- bet = smlnum;
- *info = 1;
- }
-
- *scale = 1.;
- gam = (d__1 = b[b_dim1 + 1], abs(d__1));
- if (smlnum * gam > bet) {
- *scale = 1. / gam;
- }
-
- x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / tau1;
- *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
- return;
-
- /* 1 by 2: */
- /* TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12] */
- /* [TR21 TR22] */
-
- L20:
-
- /* Computing MAX */
- /* Computing MAX */
- d__7 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__8 = (d__2 = tr[tr_dim1 + 1]
- , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tr[(tr_dim1 <<
- 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tr[
- tr_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 =
- tr[(tr_dim1 << 1) + 2], abs(d__5));
- d__6 = eps * f2cmax(d__7,d__8);
- smin = f2cmax(d__6,smlnum);
- tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
- tmp[3] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
- if (*ltranr) {
- tmp[1] = sgn * tr[tr_dim1 + 2];
- tmp[2] = sgn * tr[(tr_dim1 << 1) + 1];
- } else {
- tmp[1] = sgn * tr[(tr_dim1 << 1) + 1];
- tmp[2] = sgn * tr[tr_dim1 + 2];
- }
- btmp[0] = b[b_dim1 + 1];
- btmp[1] = b[(b_dim1 << 1) + 1];
- goto L40;
-
- /* 2 by 1: */
- /* op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11] */
- /* [TL21 TL22] [X21] [X21] [B21] */
-
- L30:
- /* Computing MAX */
- /* Computing MAX */
- d__7 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__8 = (d__2 = tl[tl_dim1 + 1]
- , abs(d__2)), d__7 = f2cmax(d__7,d__8), d__8 = (d__3 = tl[(tl_dim1 <<
- 1) + 1], abs(d__3)), d__7 = f2cmax(d__7,d__8), d__8 = (d__4 = tl[
- tl_dim1 + 2], abs(d__4)), d__7 = f2cmax(d__7,d__8), d__8 = (d__5 =
- tl[(tl_dim1 << 1) + 2], abs(d__5));
- d__6 = eps * f2cmax(d__7,d__8);
- smin = f2cmax(d__6,smlnum);
- tmp[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
- tmp[3] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
- if (*ltranl) {
- tmp[1] = tl[(tl_dim1 << 1) + 1];
- tmp[2] = tl[tl_dim1 + 2];
- } else {
- tmp[1] = tl[tl_dim1 + 2];
- tmp[2] = tl[(tl_dim1 << 1) + 1];
- }
- btmp[0] = b[b_dim1 + 1];
- btmp[1] = b[b_dim1 + 2];
- L40:
-
- /* Solve 2 by 2 system using complete pivoting. */
- /* Set pivots less than SMIN to SMIN. */
-
- ipiv = idamax_(&c__4, tmp, &c__1);
- u11 = tmp[ipiv - 1];
- if (abs(u11) <= smin) {
- *info = 1;
- u11 = smin;
- }
- u12 = tmp[locu12[ipiv - 1] - 1];
- l21 = tmp[locl21[ipiv - 1] - 1] / u11;
- u22 = tmp[locu22[ipiv - 1] - 1] - u12 * l21;
- xswap = xswpiv[ipiv - 1];
- bswap = bswpiv[ipiv - 1];
- if (abs(u22) <= smin) {
- *info = 1;
- u22 = smin;
- }
- if (bswap) {
- temp = btmp[1];
- btmp[1] = btmp[0] - l21 * temp;
- btmp[0] = temp;
- } else {
- btmp[1] -= l21 * btmp[0];
- }
- *scale = 1.;
- if (smlnum * 2. * abs(btmp[1]) > abs(u22) || smlnum * 2. * abs(btmp[0]) >
- abs(u11)) {
- /* Computing MAX */
- d__1 = abs(btmp[0]), d__2 = abs(btmp[1]);
- *scale = .5 / f2cmax(d__1,d__2);
- btmp[0] *= *scale;
- btmp[1] *= *scale;
- }
- x2[1] = btmp[1] / u22;
- x2[0] = btmp[0] / u11 - u12 / u11 * x2[1];
- if (xswap) {
- temp = x2[1];
- x2[1] = x2[0];
- x2[0] = temp;
- }
- x[x_dim1 + 1] = x2[0];
- if (*n1 == 1) {
- x[(x_dim1 << 1) + 1] = x2[1];
- *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 1)
- + 1], abs(d__2));
- } else {
- x[x_dim1 + 2] = x2[1];
- /* Computing MAX */
- d__3 = (d__1 = x[x_dim1 + 1], abs(d__1)), d__4 = (d__2 = x[x_dim1 + 2]
- , abs(d__2));
- *xnorm = f2cmax(d__3,d__4);
- }
- return;
-
- /* 2 by 2: */
- /* op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12] */
- /* [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22] */
-
- /* Solve equivalent 4 by 4 system using complete pivoting. */
- /* Set pivots less than SMIN to SMIN. */
-
- L50:
- /* Computing MAX */
- d__5 = (d__1 = tr[tr_dim1 + 1], abs(d__1)), d__6 = (d__2 = tr[(tr_dim1 <<
- 1) + 1], abs(d__2)), d__5 = f2cmax(d__5,d__6), d__6 = (d__3 = tr[
- tr_dim1 + 2], abs(d__3)), d__5 = f2cmax(d__5,d__6), d__6 = (d__4 =
- tr[(tr_dim1 << 1) + 2], abs(d__4));
- smin = f2cmax(d__5,d__6);
- /* Computing MAX */
- d__5 = smin, d__6 = (d__1 = tl[tl_dim1 + 1], abs(d__1)), d__5 = f2cmax(d__5,
- d__6), d__6 = (d__2 = tl[(tl_dim1 << 1) + 1], abs(d__2)), d__5 =
- f2cmax(d__5,d__6), d__6 = (d__3 = tl[tl_dim1 + 2], abs(d__3)), d__5 =
- f2cmax(d__5,d__6), d__6 = (d__4 = tl[(tl_dim1 << 1) + 2], abs(d__4))
- ;
- smin = f2cmax(d__5,d__6);
- /* Computing MAX */
- d__1 = eps * smin;
- smin = f2cmax(d__1,smlnum);
- btmp[0] = 0.;
- dcopy_(&c__16, btmp, &c__0, t16, &c__1);
- t16[0] = tl[tl_dim1 + 1] + sgn * tr[tr_dim1 + 1];
- t16[5] = tl[(tl_dim1 << 1) + 2] + sgn * tr[tr_dim1 + 1];
- t16[10] = tl[tl_dim1 + 1] + sgn * tr[(tr_dim1 << 1) + 2];
- t16[15] = tl[(tl_dim1 << 1) + 2] + sgn * tr[(tr_dim1 << 1) + 2];
- if (*ltranl) {
- t16[4] = tl[tl_dim1 + 2];
- t16[1] = tl[(tl_dim1 << 1) + 1];
- t16[14] = tl[tl_dim1 + 2];
- t16[11] = tl[(tl_dim1 << 1) + 1];
- } else {
- t16[4] = tl[(tl_dim1 << 1) + 1];
- t16[1] = tl[tl_dim1 + 2];
- t16[14] = tl[(tl_dim1 << 1) + 1];
- t16[11] = tl[tl_dim1 + 2];
- }
- if (*ltranr) {
- t16[8] = sgn * tr[(tr_dim1 << 1) + 1];
- t16[13] = sgn * tr[(tr_dim1 << 1) + 1];
- t16[2] = sgn * tr[tr_dim1 + 2];
- t16[7] = sgn * tr[tr_dim1 + 2];
- } else {
- t16[8] = sgn * tr[tr_dim1 + 2];
- t16[13] = sgn * tr[tr_dim1 + 2];
- t16[2] = sgn * tr[(tr_dim1 << 1) + 1];
- t16[7] = sgn * tr[(tr_dim1 << 1) + 1];
- }
- btmp[0] = b[b_dim1 + 1];
- btmp[1] = b[b_dim1 + 2];
- btmp[2] = b[(b_dim1 << 1) + 1];
- btmp[3] = b[(b_dim1 << 1) + 2];
-
- /* Perform elimination */
-
- for (i__ = 1; i__ <= 3; ++i__) {
- xmax = 0.;
- for (ip = i__; ip <= 4; ++ip) {
- for (jp = i__; jp <= 4; ++jp) {
- if ((d__1 = t16[ip + (jp << 2) - 5], abs(d__1)) >= xmax) {
- xmax = (d__1 = t16[ip + (jp << 2) - 5], abs(d__1));
- ipsv = ip;
- jpsv = jp;
- }
- /* L60: */
- }
- /* L70: */
- }
- if (ipsv != i__) {
- dswap_(&c__4, &t16[ipsv - 1], &c__4, &t16[i__ - 1], &c__4);
- temp = btmp[i__ - 1];
- btmp[i__ - 1] = btmp[ipsv - 1];
- btmp[ipsv - 1] = temp;
- }
- if (jpsv != i__) {
- dswap_(&c__4, &t16[(jpsv << 2) - 4], &c__1, &t16[(i__ << 2) - 4],
- &c__1);
- }
- jpiv[i__ - 1] = jpsv;
- if ((d__1 = t16[i__ + (i__ << 2) - 5], abs(d__1)) < smin) {
- *info = 1;
- t16[i__ + (i__ << 2) - 5] = smin;
- }
- for (j = i__ + 1; j <= 4; ++j) {
- t16[j + (i__ << 2) - 5] /= t16[i__ + (i__ << 2) - 5];
- btmp[j - 1] -= t16[j + (i__ << 2) - 5] * btmp[i__ - 1];
- for (k = i__ + 1; k <= 4; ++k) {
- t16[j + (k << 2) - 5] -= t16[j + (i__ << 2) - 5] * t16[i__ + (
- k << 2) - 5];
- /* L80: */
- }
- /* L90: */
- }
- /* L100: */
- }
- if (abs(t16[15]) < smin) {
- *info = 1;
- t16[15] = smin;
- }
- *scale = 1.;
- if (smlnum * 8. * abs(btmp[0]) > abs(t16[0]) || smlnum * 8. * abs(btmp[1])
- > abs(t16[5]) || smlnum * 8. * abs(btmp[2]) > abs(t16[10]) ||
- smlnum * 8. * abs(btmp[3]) > abs(t16[15])) {
- /* Computing MAX */
- d__1 = abs(btmp[0]), d__2 = abs(btmp[1]), d__1 = f2cmax(d__1,d__2), d__2
- = abs(btmp[2]), d__1 = f2cmax(d__1,d__2), d__2 = abs(btmp[3]);
- *scale = .125 / f2cmax(d__1,d__2);
- btmp[0] *= *scale;
- btmp[1] *= *scale;
- btmp[2] *= *scale;
- btmp[3] *= *scale;
- }
- for (i__ = 1; i__ <= 4; ++i__) {
- k = 5 - i__;
- temp = 1. / t16[k + (k << 2) - 5];
- tmp[k - 1] = btmp[k - 1] * temp;
- for (j = k + 1; j <= 4; ++j) {
- tmp[k - 1] -= temp * t16[k + (j << 2) - 5] * tmp[j - 1];
- /* L110: */
- }
- /* L120: */
- }
- for (i__ = 1; i__ <= 3; ++i__) {
- if (jpiv[4 - i__ - 1] != 4 - i__) {
- temp = tmp[4 - i__ - 1];
- tmp[4 - i__ - 1] = tmp[jpiv[4 - i__ - 1] - 1];
- tmp[jpiv[4 - i__ - 1] - 1] = temp;
- }
- /* L130: */
- }
- x[x_dim1 + 1] = tmp[0];
- x[x_dim1 + 2] = tmp[1];
- x[(x_dim1 << 1) + 1] = tmp[2];
- x[(x_dim1 << 1) + 2] = tmp[3];
- /* Computing MAX */
- d__1 = abs(tmp[0]) + abs(tmp[2]), d__2 = abs(tmp[1]) + abs(tmp[3]);
- *xnorm = f2cmax(d__1,d__2);
- return;
-
- /* End of DLASY2 */
-
- } /* dlasy2_ */
|