|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* > \brief \b DLASQ4 computes an approximation to the smallest eigenvalue using values of d from the previous
- transform. Used by sbdsqr. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLASQ4 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq4.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq4.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq4.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, */
- /* DN1, DN2, TAU, TTYPE, G ) */
-
- /* INTEGER I0, N0, N0IN, PP, TTYPE */
- /* DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU */
- /* DOUBLE PRECISION Z( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLASQ4 computes an approximation TAU to the smallest eigenvalue */
- /* > using values of d from the previous transform. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] I0 */
- /* > \verbatim */
- /* > I0 is INTEGER */
- /* > First index. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N0 */
- /* > \verbatim */
- /* > N0 is INTEGER */
- /* > Last index. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension ( 4*N0 ) */
- /* > Z holds the qd array. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PP */
- /* > \verbatim */
- /* > PP is INTEGER */
- /* > PP=0 for ping, PP=1 for pong. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N0IN */
- /* > \verbatim */
- /* > N0IN is INTEGER */
- /* > The value of N0 at start of EIGTEST. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DMIN */
- /* > \verbatim */
- /* > DMIN is DOUBLE PRECISION */
- /* > Minimum value of d. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DMIN1 */
- /* > \verbatim */
- /* > DMIN1 is DOUBLE PRECISION */
- /* > Minimum value of d, excluding D( N0 ). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DMIN2 */
- /* > \verbatim */
- /* > DMIN2 is DOUBLE PRECISION */
- /* > Minimum value of d, excluding D( N0 ) and D( N0-1 ). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DN */
- /* > \verbatim */
- /* > DN is DOUBLE PRECISION */
- /* > d(N) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DN1 */
- /* > \verbatim */
- /* > DN1 is DOUBLE PRECISION */
- /* > d(N-1) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DN2 */
- /* > \verbatim */
- /* > DN2 is DOUBLE PRECISION */
- /* > d(N-2) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAU */
- /* > \verbatim */
- /* > TAU is DOUBLE PRECISION */
- /* > This is the shift. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TTYPE */
- /* > \verbatim */
- /* > TTYPE is INTEGER */
- /* > Shift type. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] G */
- /* > \verbatim */
- /* > G is DOUBLE PRECISION */
- /* > G is passed as an argument in order to save its value between */
- /* > calls to DLASQ4. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup auxOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CNST1 = 9/16 */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dlasq4_(integer *i0, integer *n0, doublereal *z__,
- integer *pp, integer *n0in, doublereal *dmin__, doublereal *dmin1,
- doublereal *dmin2, doublereal *dn, doublereal *dn1, doublereal *dn2,
- doublereal *tau, integer *ttype, doublereal *g)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
-
- /* Local variables */
- doublereal s, a2, b1, b2;
- integer i4, nn, np;
- doublereal gam, gap1, gap2;
-
-
- /* -- LAPACK computational routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* A negative DMIN forces the shift to take that absolute value */
- /* TTYPE records the type of shift. */
-
- /* Parameter adjustments */
- --z__;
-
- /* Function Body */
- if (*dmin__ <= 0.) {
- *tau = -(*dmin__);
- *ttype = -1;
- return;
- }
-
- nn = (*n0 << 2) + *pp;
- if (*n0in == *n0) {
-
- /* No eigenvalues deflated. */
-
- if (*dmin__ == *dn || *dmin__ == *dn1) {
-
- b1 = sqrt(z__[nn - 3]) * sqrt(z__[nn - 5]);
- b2 = sqrt(z__[nn - 7]) * sqrt(z__[nn - 9]);
- a2 = z__[nn - 7] + z__[nn - 5];
-
- /* Cases 2 and 3. */
-
- if (*dmin__ == *dn && *dmin1 == *dn1) {
- gap2 = *dmin2 - a2 - *dmin2 * .25;
- if (gap2 > 0. && gap2 > b2) {
- gap1 = a2 - *dn - b2 / gap2 * b2;
- } else {
- gap1 = a2 - *dn - (b1 + b2);
- }
- if (gap1 > 0. && gap1 > b1) {
- /* Computing MAX */
- d__1 = *dn - b1 / gap1 * b1, d__2 = *dmin__ * .5;
- s = f2cmax(d__1,d__2);
- *ttype = -2;
- } else {
- s = 0.;
- if (*dn > b1) {
- s = *dn - b1;
- }
- if (a2 > b1 + b2) {
- /* Computing MIN */
- d__1 = s, d__2 = a2 - (b1 + b2);
- s = f2cmin(d__1,d__2);
- }
- /* Computing MAX */
- d__1 = s, d__2 = *dmin__ * .333;
- s = f2cmax(d__1,d__2);
- *ttype = -3;
- }
- } else {
-
- /* Case 4. */
-
- *ttype = -4;
- s = *dmin__ * .25;
- if (*dmin__ == *dn) {
- gam = *dn;
- a2 = 0.;
- if (z__[nn - 5] > z__[nn - 7]) {
- return;
- }
- b2 = z__[nn - 5] / z__[nn - 7];
- np = nn - 9;
- } else {
- np = nn - (*pp << 1);
- gam = *dn1;
- if (z__[np - 4] > z__[np - 2]) {
- return;
- }
- a2 = z__[np - 4] / z__[np - 2];
- if (z__[nn - 9] > z__[nn - 11]) {
- return;
- }
- b2 = z__[nn - 9] / z__[nn - 11];
- np = nn - 13;
- }
-
- /* Approximate contribution to norm squared from I < NN-1. */
-
- a2 += b2;
- i__1 = (*i0 << 2) - 1 + *pp;
- for (i4 = np; i4 >= i__1; i4 += -4) {
- if (b2 == 0.) {
- goto L20;
- }
- b1 = b2;
- if (z__[i4] > z__[i4 - 2]) {
- return;
- }
- b2 *= z__[i4] / z__[i4 - 2];
- a2 += b2;
- if (f2cmax(b2,b1) * 100. < a2 || .563 < a2) {
- goto L20;
- }
- /* L10: */
- }
- L20:
- a2 *= 1.05;
-
- /* Rayleigh quotient residual bound. */
-
- if (a2 < .563) {
- s = gam * (1. - sqrt(a2)) / (a2 + 1.);
- }
- }
- } else if (*dmin__ == *dn2) {
-
- /* Case 5. */
-
- *ttype = -5;
- s = *dmin__ * .25;
-
- /* Compute contribution to norm squared from I > NN-2. */
-
- np = nn - (*pp << 1);
- b1 = z__[np - 2];
- b2 = z__[np - 6];
- gam = *dn2;
- if (z__[np - 8] > b2 || z__[np - 4] > b1) {
- return;
- }
- a2 = z__[np - 8] / b2 * (z__[np - 4] / b1 + 1.);
-
- /* Approximate contribution to norm squared from I < NN-2. */
-
- if (*n0 - *i0 > 2) {
- b2 = z__[nn - 13] / z__[nn - 15];
- a2 += b2;
- i__1 = (*i0 << 2) - 1 + *pp;
- for (i4 = nn - 17; i4 >= i__1; i4 += -4) {
- if (b2 == 0.) {
- goto L40;
- }
- b1 = b2;
- if (z__[i4] > z__[i4 - 2]) {
- return;
- }
- b2 *= z__[i4] / z__[i4 - 2];
- a2 += b2;
- if (f2cmax(b2,b1) * 100. < a2 || .563 < a2) {
- goto L40;
- }
- /* L30: */
- }
- L40:
- a2 *= 1.05;
- }
-
- if (a2 < .563) {
- s = gam * (1. - sqrt(a2)) / (a2 + 1.);
- }
- } else {
-
- /* Case 6, no information to guide us. */
-
- if (*ttype == -6) {
- *g += (1. - *g) * .333;
- } else if (*ttype == -18) {
- *g = .083250000000000005;
- } else {
- *g = .25;
- }
- s = *g * *dmin__;
- *ttype = -6;
- }
-
- } else if (*n0in == *n0 + 1) {
-
- /* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN. */
-
- if (*dmin1 == *dn1 && *dmin2 == *dn2) {
-
- /* Cases 7 and 8. */
-
- *ttype = -7;
- s = *dmin1 * .333;
- if (z__[nn - 5] > z__[nn - 7]) {
- return;
- }
- b1 = z__[nn - 5] / z__[nn - 7];
- b2 = b1;
- if (b2 == 0.) {
- goto L60;
- }
- i__1 = (*i0 << 2) - 1 + *pp;
- for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
- a2 = b1;
- if (z__[i4] > z__[i4 - 2]) {
- return;
- }
- b1 *= z__[i4] / z__[i4 - 2];
- b2 += b1;
- if (f2cmax(b1,a2) * 100. < b2) {
- goto L60;
- }
- /* L50: */
- }
- L60:
- b2 = sqrt(b2 * 1.05);
- /* Computing 2nd power */
- d__1 = b2;
- a2 = *dmin1 / (d__1 * d__1 + 1.);
- gap2 = *dmin2 * .5 - a2;
- if (gap2 > 0. && gap2 > b2 * a2) {
- /* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
- s = f2cmax(d__1,d__2);
- } else {
- /* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
- s = f2cmax(d__1,d__2);
- *ttype = -8;
- }
- } else {
-
- /* Case 9. */
-
- s = *dmin1 * .25;
- if (*dmin1 == *dn1) {
- s = *dmin1 * .5;
- }
- *ttype = -9;
- }
-
- } else if (*n0in == *n0 + 2) {
-
- /* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN. */
-
- /* Cases 10 and 11. */
-
- if (*dmin2 == *dn2 && z__[nn - 5] * 2. < z__[nn - 7]) {
- *ttype = -10;
- s = *dmin2 * .333;
- if (z__[nn - 5] > z__[nn - 7]) {
- return;
- }
- b1 = z__[nn - 5] / z__[nn - 7];
- b2 = b1;
- if (b2 == 0.) {
- goto L80;
- }
- i__1 = (*i0 << 2) - 1 + *pp;
- for (i4 = (*n0 << 2) - 9 + *pp; i4 >= i__1; i4 += -4) {
- if (z__[i4] > z__[i4 - 2]) {
- return;
- }
- b1 *= z__[i4] / z__[i4 - 2];
- b2 += b1;
- if (b1 * 100. < b2) {
- goto L80;
- }
- /* L70: */
- }
- L80:
- b2 = sqrt(b2 * 1.05);
- /* Computing 2nd power */
- d__1 = b2;
- a2 = *dmin2 / (d__1 * d__1 + 1.);
- gap2 = z__[nn - 7] + z__[nn - 9] - sqrt(z__[nn - 11]) * sqrt(z__[
- nn - 9]) - a2;
- if (gap2 > 0. && gap2 > b2 * a2) {
- /* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - a2 * 1.01 * (b2 / gap2) * b2);
- s = f2cmax(d__1,d__2);
- } else {
- /* Computing MAX */
- d__1 = s, d__2 = a2 * (1. - b2 * 1.01);
- s = f2cmax(d__1,d__2);
- }
- } else {
- s = *dmin2 * .25;
- *ttype = -11;
- }
- } else if (*n0in > *n0 + 2) {
-
- /* Case 12, more than two eigenvalues deflated. No information. */
-
- s = 0.;
- *ttype = -12;
- }
-
- *tau = s;
- return;
-
- /* End of DLASQ4 */
-
- } /* dlasq4_ */
|