|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static integer c__2 = 2;
- static integer c__10 = 10;
- static integer c__3 = 3;
- static integer c__4 = 4;
- static integer c__11 = 11;
-
- /* > \brief \b DLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix assoc
- iated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLASQ2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLASQ2( N, Z, INFO ) */
-
- /* INTEGER INFO, N */
- /* DOUBLE PRECISION Z( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLASQ2 computes all the eigenvalues of the symmetric positive */
- /* > definite tridiagonal matrix associated with the qd array Z to high */
- /* > relative accuracy are computed to high relative accuracy, in the */
- /* > absence of denormalization, underflow and overflow. */
- /* > */
- /* > To see the relation of Z to the tridiagonal matrix, let L be a */
- /* > unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */
- /* > let U be an upper bidiagonal matrix with 1's above and diagonal */
- /* > Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */
- /* > symmetric tridiagonal to which it is similar. */
- /* > */
- /* > Note : DLASQ2 defines a logical variable, IEEE, which is true */
- /* > on machines which follow ieee-754 floating-point standard in their */
- /* > handling of infinities and NaNs, and false otherwise. This variable */
- /* > is passed to DLASQ3. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of rows and columns in the matrix. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension ( 4*N ) */
- /* > On entry Z holds the qd array. On exit, entries 1 to N hold */
- /* > the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */
- /* > trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */
- /* > N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */
- /* > holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */
- /* > shifts that failed. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if the i-th argument is a scalar and had an illegal */
- /* > value, then INFO = -i, if the i-th argument is an */
- /* > array and the j-entry had an illegal value, then */
- /* > INFO = -(i*100+j) */
- /* > > 0: the algorithm failed */
- /* > = 1, a split was marked by a positive value in E */
- /* > = 2, current block of Z not diagonalized after 100*N */
- /* > iterations (in inner while loop). On exit Z holds */
- /* > a qd array with the same eigenvalues as the given Z. */
- /* > = 3, termination criterion of outer while loop not met */
- /* > (program created more than N unreduced blocks) */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup auxOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Local Variables: I0:N0 defines a current unreduced segment of Z. */
- /* > The shifts are accumulated in SIGMA. Iteration count is in ITER. */
- /* > Ping-pong is controlled by PP (alternates between 0 and 1). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dlasq2_(integer *n, doublereal *z__, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2, i__3;
- doublereal d__1, d__2;
-
- /* Local variables */
- logical ieee;
- integer nbig;
- doublereal dmin__, emin, emax;
- integer kmin, ndiv, iter;
- doublereal qmin, temp, qmax, zmax;
- integer splt;
- doublereal dmin1, dmin2, d__, e, g;
- integer k;
- doublereal s, t;
- integer nfail;
- doublereal desig, trace, sigma;
- integer iinfo;
- doublereal tempe, tempq;
- integer i0, i1, i4, n0, n1, ttype;
- extern /* Subroutine */ void dlasq3_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, integer *, integer *, logical *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- doublereal dn;
- extern doublereal dlamch_(char *);
- integer pp;
- doublereal deemin;
- integer iwhila, iwhilb;
- doublereal oldemn, safmin;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *,
- integer *);
- doublereal dn1, dn2, dee, eps, tau, tol;
- integer ipn4;
- doublereal tol2;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments. */
- /* (in case DLASQ2 is not called by DLASQ1) */
-
- /* Parameter adjustments */
- --z__;
-
- /* Function Body */
- *info = 0;
- eps = dlamch_("Precision");
- safmin = dlamch_("Safe minimum");
- tol = eps * 100.;
- /* Computing 2nd power */
- d__1 = tol;
- tol2 = d__1 * d__1;
-
- if (*n < 0) {
- *info = -1;
- xerbla_("DLASQ2", &c__1, (ftnlen)6);
- return;
- } else if (*n == 0) {
- return;
- } else if (*n == 1) {
-
- /* 1-by-1 case. */
-
- if (z__[1] < 0.) {
- *info = -201;
- xerbla_("DLASQ2", &c__2, (ftnlen)6);
- }
- return;
- } else if (*n == 2) {
-
- /* 2-by-2 case. */
-
- if (z__[1] < 0.) {
- *info = -201;
- xerbla_("DLASQ2", &c__2, (ftnlen)6);
- return;
- } else if (z__[2] < 0.) {
- *info = -202;
- xerbla_("DLASQ2", &c__2, (ftnlen)6);
- return;
- } else if (z__[3] < 0.) {
- *info = -203;
- xerbla_("DLASQ2", &c__2, (ftnlen)6);
- return;
- } else if (z__[3] > z__[1]) {
- d__ = z__[3];
- z__[3] = z__[1];
- z__[1] = d__;
- }
- z__[5] = z__[1] + z__[2] + z__[3];
- if (z__[2] > z__[3] * tol2) {
- t = (z__[1] - z__[3] + z__[2]) * .5;
- s = z__[3] * (z__[2] / t);
- if (s <= t) {
- s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.) + 1.)));
- } else {
- s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s)));
- }
- t = z__[1] + (s + z__[2]);
- z__[3] *= z__[1] / t;
- z__[1] = t;
- }
- z__[2] = z__[3];
- z__[6] = z__[2] + z__[1];
- return;
- }
-
- /* Check for negative data and compute sums of q's and e's. */
-
- z__[*n * 2] = 0.;
- emin = z__[2];
- qmax = 0.;
- zmax = 0.;
- d__ = 0.;
- e = 0.;
-
- i__1 = *n - 1 << 1;
- for (k = 1; k <= i__1; k += 2) {
- if (z__[k] < 0.) {
- *info = -(k + 200);
- xerbla_("DLASQ2", &c__2, (ftnlen)6);
- return;
- } else if (z__[k + 1] < 0.) {
- *info = -(k + 201);
- xerbla_("DLASQ2", &c__2, (ftnlen)6);
- return;
- }
- d__ += z__[k];
- e += z__[k + 1];
- /* Computing MAX */
- d__1 = qmax, d__2 = z__[k];
- qmax = f2cmax(d__1,d__2);
- /* Computing MIN */
- d__1 = emin, d__2 = z__[k + 1];
- emin = f2cmin(d__1,d__2);
- /* Computing MAX */
- d__1 = f2cmax(qmax,zmax), d__2 = z__[k + 1];
- zmax = f2cmax(d__1,d__2);
- /* L10: */
- }
- if (z__[(*n << 1) - 1] < 0.) {
- *info = -((*n << 1) + 199);
- xerbla_("DLASQ2", &c__2, (ftnlen)6);
- return;
- }
- d__ += z__[(*n << 1) - 1];
- /* Computing MAX */
- d__1 = qmax, d__2 = z__[(*n << 1) - 1];
- qmax = f2cmax(d__1,d__2);
- zmax = f2cmax(qmax,zmax);
-
- /* Check for diagonality. */
-
- if (e == 0.) {
- i__1 = *n;
- for (k = 2; k <= i__1; ++k) {
- z__[k] = z__[(k << 1) - 1];
- /* L20: */
- }
- dlasrt_("D", n, &z__[1], &iinfo);
- z__[(*n << 1) - 1] = d__;
- return;
- }
-
- trace = d__ + e;
-
- /* Check for zero data. */
-
- if (trace == 0.) {
- z__[(*n << 1) - 1] = 0.;
- return;
- }
-
- /* Check whether the machine is IEEE conformable. */
-
- ieee = ilaenv_(&c__10, "DLASQ2", "N", &c__1, &c__2, &c__3, &c__4, (ftnlen)
- 6, (ftnlen)1) == 1 && ilaenv_(&c__11, "DLASQ2", "N", &c__1, &c__2,
- &c__3, &c__4, (ftnlen)6, (ftnlen)1) == 1;
-
- /* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */
-
- for (k = *n << 1; k >= 2; k += -2) {
- z__[k * 2] = 0.;
- z__[(k << 1) - 1] = z__[k];
- z__[(k << 1) - 2] = 0.;
- z__[(k << 1) - 3] = z__[k - 1];
- /* L30: */
- }
-
- i0 = 1;
- n0 = *n;
-
- /* Reverse the qd-array, if warranted. */
-
- if (z__[(i0 << 2) - 3] * 1.5 < z__[(n0 << 2) - 3]) {
- ipn4 = i0 + n0 << 2;
- i__1 = i0 + n0 - 1 << 1;
- for (i4 = i0 << 2; i4 <= i__1; i4 += 4) {
- temp = z__[i4 - 3];
- z__[i4 - 3] = z__[ipn4 - i4 - 3];
- z__[ipn4 - i4 - 3] = temp;
- temp = z__[i4 - 1];
- z__[i4 - 1] = z__[ipn4 - i4 - 5];
- z__[ipn4 - i4 - 5] = temp;
- /* L40: */
- }
- }
-
- /* Initial split checking via dqd and Li's test. */
-
- pp = 0;
-
- for (k = 1; k <= 2; ++k) {
-
- d__ = z__[(n0 << 2) + pp - 3];
- i__1 = (i0 << 2) + pp;
- for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) {
- if (z__[i4 - 1] <= tol2 * d__) {
- z__[i4 - 1] = 0.;
- d__ = z__[i4 - 3];
- } else {
- d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1]));
- }
- /* L50: */
- }
-
- /* dqd maps Z to ZZ plus Li's test. */
-
- emin = z__[(i0 << 2) + pp + 1];
- d__ = z__[(i0 << 2) + pp - 3];
- i__1 = (n0 - 1 << 2) + pp;
- for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) {
- z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1];
- if (z__[i4 - 1] <= tol2 * d__) {
- z__[i4 - 1] = 0.;
- z__[i4 - (pp << 1) - 2] = d__;
- z__[i4 - (pp << 1)] = 0.;
- d__ = z__[i4 + 1];
- } else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] &&
- safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) {
- temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2];
- z__[i4 - (pp << 1)] = z__[i4 - 1] * temp;
- d__ *= temp;
- } else {
- z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - (
- pp << 1) - 2]);
- d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]);
- }
- /* Computing MIN */
- d__1 = emin, d__2 = z__[i4 - (pp << 1)];
- emin = f2cmin(d__1,d__2);
- /* L60: */
- }
- z__[(n0 << 2) - pp - 2] = d__;
-
- /* Now find qmax. */
-
- qmax = z__[(i0 << 2) - pp - 2];
- i__1 = (n0 << 2) - pp - 2;
- for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) {
- /* Computing MAX */
- d__1 = qmax, d__2 = z__[i4];
- qmax = f2cmax(d__1,d__2);
- /* L70: */
- }
-
- /* Prepare for the next iteration on K. */
-
- pp = 1 - pp;
- /* L80: */
- }
-
- /* Initialise variables to pass to DLASQ3. */
-
- ttype = 0;
- dmin1 = 0.;
- dmin2 = 0.;
- dn = 0.;
- dn1 = 0.;
- dn2 = 0.;
- g = 0.;
- tau = 0.;
-
- iter = 2;
- nfail = 0;
- ndiv = n0 - i0 << 1;
-
- i__1 = *n + 1;
- for (iwhila = 1; iwhila <= i__1; ++iwhila) {
- if (n0 < 1) {
- goto L170;
- }
-
- /* While array unfinished do */
-
- /* E(N0) holds the value of SIGMA when submatrix in I0:N0 */
- /* splits from the rest of the array, but is negated. */
-
- desig = 0.;
- if (n0 == *n) {
- sigma = 0.;
- } else {
- sigma = -z__[(n0 << 2) - 1];
- }
- if (sigma < 0.) {
- *info = 1;
- return;
- }
-
- /* Find last unreduced submatrix's top index I0, find QMAX and */
- /* EMIN. Find Gershgorin-type bound if Q's much greater than E's. */
-
- emax = 0.;
- if (n0 > i0) {
- emin = (d__1 = z__[(n0 << 2) - 5], abs(d__1));
- } else {
- emin = 0.;
- }
- qmin = z__[(n0 << 2) - 3];
- qmax = qmin;
- for (i4 = n0 << 2; i4 >= 8; i4 += -4) {
- if (z__[i4 - 5] <= 0.) {
- goto L100;
- }
- if (qmin >= emax * 4.) {
- /* Computing MIN */
- d__1 = qmin, d__2 = z__[i4 - 3];
- qmin = f2cmin(d__1,d__2);
- /* Computing MAX */
- d__1 = emax, d__2 = z__[i4 - 5];
- emax = f2cmax(d__1,d__2);
- }
- /* Computing MAX */
- d__1 = qmax, d__2 = z__[i4 - 7] + z__[i4 - 5];
- qmax = f2cmax(d__1,d__2);
- /* Computing MIN */
- d__1 = emin, d__2 = z__[i4 - 5];
- emin = f2cmin(d__1,d__2);
- /* L90: */
- }
- i4 = 4;
-
- L100:
- i0 = i4 / 4;
- pp = 0;
-
- if (n0 - i0 > 1) {
- dee = z__[(i0 << 2) - 3];
- deemin = dee;
- kmin = i0;
- i__2 = (n0 << 2) - 3;
- for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) {
- dee = z__[i4] * (dee / (dee + z__[i4 - 2]));
- if (dee <= deemin) {
- deemin = dee;
- kmin = (i4 + 3) / 4;
- }
- /* L110: */
- }
- if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] *
- .5) {
- ipn4 = i0 + n0 << 2;
- pp = 2;
- i__2 = i0 + n0 - 1 << 1;
- for (i4 = i0 << 2; i4 <= i__2; i4 += 4) {
- temp = z__[i4 - 3];
- z__[i4 - 3] = z__[ipn4 - i4 - 3];
- z__[ipn4 - i4 - 3] = temp;
- temp = z__[i4 - 2];
- z__[i4 - 2] = z__[ipn4 - i4 - 2];
- z__[ipn4 - i4 - 2] = temp;
- temp = z__[i4 - 1];
- z__[i4 - 1] = z__[ipn4 - i4 - 5];
- z__[ipn4 - i4 - 5] = temp;
- temp = z__[i4];
- z__[i4] = z__[ipn4 - i4 - 4];
- z__[ipn4 - i4 - 4] = temp;
- /* L120: */
- }
- }
- }
-
- /* Put -(initial shift) into DMIN. */
-
- /* Computing MAX */
- d__1 = 0., d__2 = qmin - sqrt(qmin) * 2. * sqrt(emax);
- dmin__ = -f2cmax(d__1,d__2);
-
- /* Now I0:N0 is unreduced. */
- /* PP = 0 for ping, PP = 1 for pong. */
- /* PP = 2 indicates that flipping was applied to the Z array and */
- /* and that the tests for deflation upon entry in DLASQ3 */
- /* should not be performed. */
-
- nbig = (n0 - i0 + 1) * 100;
- i__2 = nbig;
- for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) {
- if (i0 > n0) {
- goto L150;
- }
-
- /* While submatrix unfinished take a good dqds step. */
-
- dlasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, &
- nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, &
- dn1, &dn2, &g, &tau);
-
- pp = 1 - pp;
-
- /* When EMIN is very small check for splits. */
-
- if (pp == 0 && n0 - i0 >= 3) {
- if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 *
- sigma) {
- splt = i0 - 1;
- qmax = z__[(i0 << 2) - 3];
- emin = z__[(i0 << 2) - 1];
- oldemn = z__[i0 * 4];
- i__3 = n0 - 3 << 2;
- for (i4 = i0 << 2; i4 <= i__3; i4 += 4) {
- if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <=
- tol2 * sigma) {
- z__[i4 - 1] = -sigma;
- splt = i4 / 4;
- qmax = 0.;
- emin = z__[i4 + 3];
- oldemn = z__[i4 + 4];
- } else {
- /* Computing MAX */
- d__1 = qmax, d__2 = z__[i4 + 1];
- qmax = f2cmax(d__1,d__2);
- /* Computing MIN */
- d__1 = emin, d__2 = z__[i4 - 1];
- emin = f2cmin(d__1,d__2);
- /* Computing MIN */
- d__1 = oldemn, d__2 = z__[i4];
- oldemn = f2cmin(d__1,d__2);
- }
- /* L130: */
- }
- z__[(n0 << 2) - 1] = emin;
- z__[n0 * 4] = oldemn;
- i0 = splt + 1;
- }
- }
-
- /* L140: */
- }
-
- *info = 2;
-
- /* Maximum number of iterations exceeded, restore the shift */
- /* SIGMA and place the new d's and e's in a qd array. */
- /* This might need to be done for several blocks */
-
- i1 = i0;
- n1 = n0;
- L145:
- tempq = z__[(i0 << 2) - 3];
- z__[(i0 << 2) - 3] += sigma;
- i__2 = n0;
- for (k = i0 + 1; k <= i__2; ++k) {
- tempe = z__[(k << 2) - 5];
- z__[(k << 2) - 5] *= tempq / z__[(k << 2) - 7];
- tempq = z__[(k << 2) - 3];
- z__[(k << 2) - 3] = z__[(k << 2) - 3] + sigma + tempe - z__[(k <<
- 2) - 5];
- }
-
- /* Prepare to do this on the previous block if there is one */
-
- if (i1 > 1) {
- n1 = i1 - 1;
- while(i1 >= 2 && z__[(i1 << 2) - 5] >= 0.) {
- --i1;
- }
- sigma = -z__[(n1 << 2) - 1];
- goto L145;
- }
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- z__[(k << 1) - 1] = z__[(k << 2) - 3];
-
- /* Only the block 1..N0 is unfinished. The rest of the e's */
- /* must be essentially zero, although sometimes other data */
- /* has been stored in them. */
-
- if (k < n0) {
- z__[k * 2] = z__[(k << 2) - 1];
- } else {
- z__[k * 2] = 0.;
- }
- }
- return;
-
- /* end IWHILB */
-
- L150:
-
- /* L160: */
- ;
- }
-
- *info = 3;
- return;
-
- /* end IWHILA */
-
- L170:
-
- /* Move q's to the front. */
-
- i__1 = *n;
- for (k = 2; k <= i__1; ++k) {
- z__[k] = z__[(k << 2) - 3];
- /* L180: */
- }
-
- /* Sort and compute sum of eigenvalues. */
-
- dlasrt_("D", n, &z__[1], &iinfo);
-
- e = 0.;
- for (k = *n; k >= 1; --k) {
- e += z__[k];
- /* L190: */
- }
-
- /* Store trace, sum(eigenvalues) and information on performance. */
-
- z__[(*n << 1) + 1] = trace;
- z__[(*n << 1) + 2] = e;
- z__[(*n << 1) + 3] = (doublereal) iter;
- /* Computing 2nd power */
- i__1 = *n;
- z__[(*n << 1) + 4] = (doublereal) ndiv / (doublereal) (i__1 * i__1);
- z__[(*n << 1) + 5] = nfail * 100. / (doublereal) iter;
- return;
-
- /* End of DLASQ2 */
-
- } /* dlasq2_ */
|