|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublereal c_b5 = 0.;
- static integer c__1 = 1;
- static integer c__2 = 2;
-
- /* > \brief \b DLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenv
- alues of L D LT. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLARRV + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrv.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrv.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrv.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLARRV( N, VL, VU, D, L, PIVMIN, */
- /* ISPLIT, M, DOL, DOU, MINRGP, */
- /* RTOL1, RTOL2, W, WERR, WGAP, */
- /* IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, */
- /* WORK, IWORK, INFO ) */
-
- /* INTEGER DOL, DOU, INFO, LDZ, M, N */
- /* DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU */
- /* INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ), */
- /* $ ISUPPZ( * ), IWORK( * ) */
- /* DOUBLE PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( * ), */
- /* $ WGAP( * ), WORK( * ) */
- /* DOUBLE PRECISION Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLARRV computes the eigenvectors of the tridiagonal matrix */
- /* > T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T. */
- /* > The input eigenvalues should have been computed by DLARRE. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is DOUBLE PRECISION */
- /* > Lower bound of the interval that contains the desired */
- /* > eigenvalues. VL < VU. Needed to compute gaps on the left or right */
- /* > end of the extremal eigenvalues in the desired RANGE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VU */
- /* > \verbatim */
- /* > VU is DOUBLE PRECISION */
- /* > Upper bound of the interval that contains the desired */
- /* > eigenvalues. VL < VU. */
- /* > Note: VU is currently not used by this implementation of DLARRV, VU is */
- /* > passed to DLARRV because it could be used compute gaps on the right end */
- /* > of the extremal eigenvalues. However, with not much initial accuracy in */
- /* > LAMBDA and VU, the formula can lead to an overestimation of the right gap */
- /* > and thus to inadequately early RQI 'convergence'. This is currently */
- /* > prevented this by forcing a small right gap. And so it turns out that VU */
- /* > is currently not used by this implementation of DLARRV. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, the N diagonal elements of the diagonal matrix D. */
- /* > On exit, D may be overwritten. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] L */
- /* > \verbatim */
- /* > L is DOUBLE PRECISION array, dimension (N) */
- /* > On entry, the (N-1) subdiagonal elements of the unit */
- /* > bidiagonal matrix L are in elements 1 to N-1 of L */
- /* > (if the matrix is not split.) At the end of each block */
- /* > is stored the corresponding shift as given by DLARRE. */
- /* > On exit, L is overwritten. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] PIVMIN */
- /* > \verbatim */
- /* > PIVMIN is DOUBLE PRECISION */
- /* > The minimum pivot allowed in the Sturm sequence. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ISPLIT */
- /* > \verbatim */
- /* > ISPLIT is INTEGER array, dimension (N) */
- /* > The splitting points, at which T breaks up into blocks. */
- /* > The first block consists of rows/columns 1 to */
- /* > ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
- /* > through ISPLIT( 2 ), etc. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The total number of input eigenvalues. 0 <= M <= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DOL */
- /* > \verbatim */
- /* > DOL is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] DOU */
- /* > \verbatim */
- /* > DOU is INTEGER */
- /* > If the user wants to compute only selected eigenvectors from all */
- /* > the eigenvalues supplied, he can specify an index range DOL:DOU. */
- /* > Or else the setting DOL=1, DOU=M should be applied. */
- /* > Note that DOL and DOU refer to the order in which the eigenvalues */
- /* > are stored in W. */
- /* > If the user wants to compute only selected eigenpairs, then */
- /* > the columns DOL-1 to DOU+1 of the eigenvector space Z contain the */
- /* > computed eigenvectors. All other columns of Z are set to zero. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MINRGP */
- /* > \verbatim */
- /* > MINRGP is DOUBLE PRECISION */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RTOL1 */
- /* > \verbatim */
- /* > RTOL1 is DOUBLE PRECISION */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RTOL2 */
- /* > \verbatim */
- /* > RTOL2 is DOUBLE PRECISION */
- /* > Parameters for bisection. */
- /* > An interval [LEFT,RIGHT] has converged if */
- /* > RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] W */
- /* > \verbatim */
- /* > W is DOUBLE PRECISION array, dimension (N) */
- /* > The first M elements of W contain the APPROXIMATE eigenvalues for */
- /* > which eigenvectors are to be computed. The eigenvalues */
- /* > should be grouped by split-off block and ordered from */
- /* > smallest to largest within the block ( The output array */
- /* > W from DLARRE is expected here ). Furthermore, they are with */
- /* > respect to the shift of the corresponding root representation */
- /* > for their block. On exit, W holds the eigenvalues of the */
- /* > UNshifted matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] WERR */
- /* > \verbatim */
- /* > WERR is DOUBLE PRECISION array, dimension (N) */
- /* > The first M elements contain the semiwidth of the uncertainty */
- /* > interval of the corresponding eigenvalue in W */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] WGAP */
- /* > \verbatim */
- /* > WGAP is DOUBLE PRECISION array, dimension (N) */
- /* > The separation from the right neighbor eigenvalue in W. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IBLOCK */
- /* > \verbatim */
- /* > IBLOCK is INTEGER array, dimension (N) */
- /* > The indices of the blocks (submatrices) associated with the */
- /* > corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */
- /* > W(i) belongs to the first block from the top, =2 if W(i) */
- /* > belongs to the second block, etc. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] INDEXW */
- /* > \verbatim */
- /* > INDEXW is INTEGER array, dimension (N) */
- /* > The indices of the eigenvalues within each block (submatrix); */
- /* > for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */
- /* > i-th eigenvalue W(i) is the 10-th eigenvalue in the second block. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] GERS */
- /* > \verbatim */
- /* > GERS is DOUBLE PRECISION array, dimension (2*N) */
- /* > The N Gerschgorin intervals (the i-th Gerschgorin interval */
- /* > is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should */
- /* > be computed from the original UNshifted matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension (LDZ, f2cmax(1,M) ) */
- /* > If INFO = 0, the first M columns of Z contain the */
- /* > orthonormal eigenvectors of the matrix T */
- /* > corresponding to the input eigenvalues, with the i-th */
- /* > column of Z holding the eigenvector associated with W(i). */
- /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
- /* > supplied in the array Z. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1, and if */
- /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ISUPPZ */
- /* > \verbatim */
- /* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
- /* > The support of the eigenvectors in Z, i.e., the indices */
- /* > indicating the nonzero elements in Z. The I-th eigenvector */
- /* > is nonzero only in elements ISUPPZ( 2*I-1 ) through */
- /* > ISUPPZ( 2*I ). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (12*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (7*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > */
- /* > > 0: A problem occurred in DLARRV. */
- /* > < 0: One of the called subroutines signaled an internal problem. */
- /* > Needs inspection of the corresponding parameter IINFO */
- /* > for further information. */
- /* > */
- /* > =-1: Problem in DLARRB when refining a child's eigenvalues. */
- /* > =-2: Problem in DLARRF when computing the RRR of a child. */
- /* > When a child is inside a tight cluster, it can be difficult */
- /* > to find an RRR. A partial remedy from the user's point of */
- /* > view is to make the parameter MINRGP smaller and recompile. */
- /* > However, as the orthogonality of the computed vectors is */
- /* > proportional to 1/MINRGP, the user should be aware that */
- /* > he might be trading in precision when he decreases MINRGP. */
- /* > =-3: Problem in DLARRB when refining a single eigenvalue */
- /* > after the Rayleigh correction was rejected. */
- /* > = 5: The Rayleigh Quotient Iteration failed to converge to */
- /* > full accuracy in MAXITR steps. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup doubleOTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Beresford Parlett, University of California, Berkeley, USA \n */
- /* > Jim Demmel, University of California, Berkeley, USA \n */
- /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
- /* > Osni Marques, LBNL/NERSC, USA \n */
- /* > Christof Voemel, University of California, Berkeley, USA */
-
- /* ===================================================================== */
- /* Subroutine */ void dlarrv_(integer *n, doublereal *vl, doublereal *vu,
- doublereal *d__, doublereal *l, doublereal *pivmin, integer *isplit,
- integer *m, integer *dol, integer *dou, doublereal *minrgp,
- doublereal *rtol1, doublereal *rtol2, doublereal *w, doublereal *werr,
- doublereal *wgap, integer *iblock, integer *indexw, doublereal *gers,
- doublereal *z__, integer *ldz, integer *isuppz, doublereal *work,
- integer *iwork, integer *info)
- {
- /* System generated locals */
- integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2;
- logical L__1;
-
- /* Local variables */
- integer iend, jblk;
- doublereal lgap;
- integer done;
- doublereal rgap, left;
- integer wend, iter;
- doublereal bstw;
- integer minwsize, itmp1, i__, j, k, p, q;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *);
- integer indld;
- doublereal fudge;
- integer idone;
- doublereal sigma;
- integer iinfo, iindr;
- doublereal resid;
- logical eskip;
- doublereal right;
- extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer nclus, zfrom;
- doublereal rqtol;
- integer iindc1, iindc2;
- extern /* Subroutine */ void dlar1v_(integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *, logical *,
- integer *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *);
- integer miniwsize;
- logical stp2ii;
- doublereal lambda;
- integer ii;
- doublereal gl;
- integer im, in;
- extern doublereal dlamch_(char *);
- doublereal gu;
- integer ibegin, indeig;
- logical needbs;
- integer indlld;
- doublereal sgndef, mingma;
- extern /* Subroutine */ void dlarrb_(integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, integer *);
- integer oldien, oldncl, wbegin, negcnt;
- doublereal spdiam;
- integer oldcls;
- doublereal savgap;
- integer ndepth;
- doublereal ssigma;
- extern /* Subroutine */ void dlarrf_(integer *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *);
- logical usedbs;
- integer iindwk, offset;
- doublereal gaptol;
- extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *);
- integer newcls, oldfst, indwrk, windex, oldlst;
- logical usedrq;
- integer newfst, newftt, parity, windmn, windpl, isupmn, newlst, zusedl;
- doublereal bstres;
- integer newsiz, zusedu, zusedw;
- doublereal nrminv, rqcorr;
- logical tryrqc;
- integer isupmx;
- doublereal gap, eps, tau, tol, tmp;
- integer zto;
- doublereal ztz;
-
-
- /* -- LAPACK auxiliary routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
- /* Parameter adjustments */
- --d__;
- --l;
- --isplit;
- --w;
- --werr;
- --wgap;
- --iblock;
- --indexw;
- --gers;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --isuppz;
- --work;
- --iwork;
-
- /* Function Body */
- *info = 0;
-
- /* Quick return if possible */
-
- if (*n <= 0 || *m <= 0) {
- return;
- }
-
- /* The first N entries of WORK are reserved for the eigenvalues */
- indld = *n + 1;
- indlld = (*n << 1) + 1;
- indwrk = *n * 3 + 1;
- minwsize = *n * 12;
- i__1 = minwsize;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- /* L5: */
- }
- /* IWORK(IINDR+1:IINDR+N) hold the twist indices R for the */
- /* factorization used to compute the FP vector */
- iindr = 0;
- /* IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current */
- /* layer and the one above. */
- iindc1 = *n;
- iindc2 = *n << 1;
- iindwk = *n * 3 + 1;
- miniwsize = *n * 7;
- i__1 = miniwsize;
- for (i__ = 1; i__ <= i__1; ++i__) {
- iwork[i__] = 0;
- /* L10: */
- }
- zusedl = 1;
- if (*dol > 1) {
- /* Set lower bound for use of Z */
- zusedl = *dol - 1;
- }
- zusedu = *m;
- if (*dou < *m) {
- /* Set lower bound for use of Z */
- zusedu = *dou + 1;
- }
- /* The width of the part of Z that is used */
- zusedw = zusedu - zusedl + 1;
- dlaset_("Full", n, &zusedw, &c_b5, &c_b5, &z__[zusedl * z_dim1 + 1], ldz);
- eps = dlamch_("Precision");
- rqtol = eps * 2.;
-
- /* Set expert flags for standard code. */
- tryrqc = TRUE_;
- if (*dol == 1 && *dou == *m) {
- } else {
- /* Only selected eigenpairs are computed. Since the other evalues */
- /* are not refined by RQ iteration, bisection has to compute to full */
- /* accuracy. */
- *rtol1 = eps * 4.;
- *rtol2 = eps * 4.;
- }
- /* The entries WBEGIN:WEND in W, WERR, WGAP correspond to the */
- /* desired eigenvalues. The support of the nonzero eigenvector */
- /* entries is contained in the interval IBEGIN:IEND. */
- /* Remark that if k eigenpairs are desired, then the eigenvectors */
- /* are stored in k contiguous columns of Z. */
- /* DONE is the number of eigenvectors already computed */
- done = 0;
- ibegin = 1;
- wbegin = 1;
- i__1 = iblock[*m];
- for (jblk = 1; jblk <= i__1; ++jblk) {
- iend = isplit[jblk];
- sigma = l[iend];
- /* Find the eigenvectors of the submatrix indexed IBEGIN */
- /* through IEND. */
- wend = wbegin - 1;
- L15:
- if (wend < *m) {
- if (iblock[wend + 1] == jblk) {
- ++wend;
- goto L15;
- }
- }
- if (wend < wbegin) {
- ibegin = iend + 1;
- goto L170;
- } else if (wend < *dol || wbegin > *dou) {
- ibegin = iend + 1;
- wbegin = wend + 1;
- goto L170;
- }
- /* Find local spectral diameter of the block */
- gl = gers[(ibegin << 1) - 1];
- gu = gers[ibegin * 2];
- i__2 = iend;
- for (i__ = ibegin + 1; i__ <= i__2; ++i__) {
- /* Computing MIN */
- d__1 = gers[(i__ << 1) - 1];
- gl = f2cmin(d__1,gl);
- /* Computing MAX */
- d__1 = gers[i__ * 2];
- gu = f2cmax(d__1,gu);
- /* L20: */
- }
- spdiam = gu - gl;
- /* OLDIEN is the last index of the previous block */
- oldien = ibegin - 1;
- /* Calculate the size of the current block */
- in = iend - ibegin + 1;
- /* The number of eigenvalues in the current block */
- im = wend - wbegin + 1;
- /* This is for a 1x1 block */
- if (ibegin == iend) {
- ++done;
- z__[ibegin + wbegin * z_dim1] = 1.;
- isuppz[(wbegin << 1) - 1] = ibegin;
- isuppz[wbegin * 2] = ibegin;
- w[wbegin] += sigma;
- work[wbegin] = w[wbegin];
- ibegin = iend + 1;
- ++wbegin;
- goto L170;
- }
- /* The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND) */
- /* Note that these can be approximations, in this case, the corresp. */
- /* entries of WERR give the size of the uncertainty interval. */
- /* The eigenvalue approximations will be refined when necessary as */
- /* high relative accuracy is required for the computation of the */
- /* corresponding eigenvectors. */
- dcopy_(&im, &w[wbegin], &c__1, &work[wbegin], &c__1);
- /* We store in W the eigenvalue approximations w.r.t. the original */
- /* matrix T. */
- i__2 = im;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w[wbegin + i__ - 1] += sigma;
- /* L30: */
- }
- /* NDEPTH is the current depth of the representation tree */
- ndepth = 0;
- /* PARITY is either 1 or 0 */
- parity = 1;
- /* NCLUS is the number of clusters for the next level of the */
- /* representation tree, we start with NCLUS = 1 for the root */
- nclus = 1;
- iwork[iindc1 + 1] = 1;
- iwork[iindc1 + 2] = im;
- /* IDONE is the number of eigenvectors already computed in the current */
- /* block */
- idone = 0;
- /* loop while( IDONE.LT.IM ) */
- /* generate the representation tree for the current block and */
- /* compute the eigenvectors */
- L40:
- if (idone < im) {
- /* This is a crude protection against infinitely deep trees */
- if (ndepth > *m) {
- *info = -2;
- return;
- }
- /* breadth first processing of the current level of the representation */
- /* tree: OLDNCL = number of clusters on current level */
- oldncl = nclus;
- /* reset NCLUS to count the number of child clusters */
- nclus = 0;
-
- parity = 1 - parity;
- if (parity == 0) {
- oldcls = iindc1;
- newcls = iindc2;
- } else {
- oldcls = iindc2;
- newcls = iindc1;
- }
- /* Process the clusters on the current level */
- i__2 = oldncl;
- for (i__ = 1; i__ <= i__2; ++i__) {
- j = oldcls + (i__ << 1);
- /* OLDFST, OLDLST = first, last index of current cluster. */
- /* cluster indices start with 1 and are relative */
- /* to WBEGIN when accessing W, WGAP, WERR, Z */
- oldfst = iwork[j - 1];
- oldlst = iwork[j];
- if (ndepth > 0) {
- /* Retrieve relatively robust representation (RRR) of cluster */
- /* that has been computed at the previous level */
- /* The RRR is stored in Z and overwritten once the eigenvectors */
- /* have been computed or when the cluster is refined */
- if (*dol == 1 && *dou == *m) {
- /* Get representation from location of the leftmost evalue */
- /* of the cluster */
- j = wbegin + oldfst - 1;
- } else {
- if (wbegin + oldfst - 1 < *dol) {
- /* Get representation from the left end of Z array */
- j = *dol - 1;
- } else if (wbegin + oldfst - 1 > *dou) {
- /* Get representation from the right end of Z array */
- j = *dou;
- } else {
- j = wbegin + oldfst - 1;
- }
- }
- dcopy_(&in, &z__[ibegin + j * z_dim1], &c__1, &d__[ibegin]
- , &c__1);
- i__3 = in - 1;
- dcopy_(&i__3, &z__[ibegin + (j + 1) * z_dim1], &c__1, &l[
- ibegin], &c__1);
- sigma = z__[iend + (j + 1) * z_dim1];
- /* Set the corresponding entries in Z to zero */
- dlaset_("Full", &in, &c__2, &c_b5, &c_b5, &z__[ibegin + j
- * z_dim1], ldz);
- }
- /* Compute DL and DLL of current RRR */
- i__3 = iend - 1;
- for (j = ibegin; j <= i__3; ++j) {
- tmp = d__[j] * l[j];
- work[indld - 1 + j] = tmp;
- work[indlld - 1 + j] = tmp * l[j];
- /* L50: */
- }
- if (ndepth > 0) {
- /* P and Q are index of the first and last eigenvalue to compute */
- /* within the current block */
- p = indexw[wbegin - 1 + oldfst];
- q = indexw[wbegin - 1 + oldlst];
- /* Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET */
- /* through the Q-OFFSET elements of these arrays are to be used. */
- /* OFFSET = P-OLDFST */
- offset = indexw[wbegin] - 1;
- /* perform limited bisection (if necessary) to get approximate */
- /* eigenvalues to the precision needed. */
- dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin - 1], &p,
- &q, rtol1, rtol2, &offset, &work[wbegin], &wgap[
- wbegin], &werr[wbegin], &work[indwrk], &iwork[
- iindwk], pivmin, &spdiam, &in, &iinfo);
- if (iinfo != 0) {
- *info = -1;
- return;
- }
- /* We also recompute the extremal gaps. W holds all eigenvalues */
- /* of the unshifted matrix and must be used for computation */
- /* of WGAP, the entries of WORK might stem from RRRs with */
- /* different shifts. The gaps from WBEGIN-1+OLDFST to */
- /* WBEGIN-1+OLDLST are correctly computed in DLARRB. */
- /* However, we only allow the gaps to become greater since */
- /* this is what should happen when we decrease WERR */
- if (oldfst > 1) {
- /* Computing MAX */
- d__1 = wgap[wbegin + oldfst - 2], d__2 = w[wbegin +
- oldfst - 1] - werr[wbegin + oldfst - 1] - w[
- wbegin + oldfst - 2] - werr[wbegin + oldfst -
- 2];
- wgap[wbegin + oldfst - 2] = f2cmax(d__1,d__2);
- }
- if (wbegin + oldlst - 1 < wend) {
- /* Computing MAX */
- d__1 = wgap[wbegin + oldlst - 1], d__2 = w[wbegin +
- oldlst] - werr[wbegin + oldlst] - w[wbegin +
- oldlst - 1] - werr[wbegin + oldlst - 1];
- wgap[wbegin + oldlst - 1] = f2cmax(d__1,d__2);
- }
- /* Each time the eigenvalues in WORK get refined, we store */
- /* the newly found approximation with all shifts applied in W */
- i__3 = oldlst;
- for (j = oldfst; j <= i__3; ++j) {
- w[wbegin + j - 1] = work[wbegin + j - 1] + sigma;
- /* L53: */
- }
- }
- /* Process the current node. */
- newfst = oldfst;
- i__3 = oldlst;
- for (j = oldfst; j <= i__3; ++j) {
- if (j == oldlst) {
- /* we are at the right end of the cluster, this is also the */
- /* boundary of the child cluster */
- newlst = j;
- } else if (wgap[wbegin + j - 1] >= *minrgp * (d__1 = work[
- wbegin + j - 1], abs(d__1))) {
- /* the right relative gap is big enough, the child cluster */
- /* (NEWFST,..,NEWLST) is well separated from the following */
- newlst = j;
- } else {
- /* inside a child cluster, the relative gap is not */
- /* big enough. */
- goto L140;
- }
- /* Compute size of child cluster found */
- newsiz = newlst - newfst + 1;
- /* NEWFTT is the place in Z where the new RRR or the computed */
- /* eigenvector is to be stored */
- if (*dol == 1 && *dou == *m) {
- /* Store representation at location of the leftmost evalue */
- /* of the cluster */
- newftt = wbegin + newfst - 1;
- } else {
- if (wbegin + newfst - 1 < *dol) {
- /* Store representation at the left end of Z array */
- newftt = *dol - 1;
- } else if (wbegin + newfst - 1 > *dou) {
- /* Store representation at the right end of Z array */
- newftt = *dou;
- } else {
- newftt = wbegin + newfst - 1;
- }
- }
- if (newsiz > 1) {
-
- /* Current child is not a singleton but a cluster. */
- /* Compute and store new representation of child. */
-
-
- /* Compute left and right cluster gap. */
-
- /* LGAP and RGAP are not computed from WORK because */
- /* the eigenvalue approximations may stem from RRRs */
- /* different shifts. However, W hold all eigenvalues */
- /* of the unshifted matrix. Still, the entries in WGAP */
- /* have to be computed from WORK since the entries */
- /* in W might be of the same order so that gaps are not */
- /* exhibited correctly for very close eigenvalues. */
- if (newfst == 1) {
- /* Computing MAX */
- d__1 = 0., d__2 = w[wbegin] - werr[wbegin] - *vl;
- lgap = f2cmax(d__1,d__2);
- } else {
- lgap = wgap[wbegin + newfst - 2];
- }
- rgap = wgap[wbegin + newlst - 1];
-
- /* Compute left- and rightmost eigenvalue of child */
- /* to high precision in order to shift as close */
- /* as possible and obtain as large relative gaps */
- /* as possible */
-
- for (k = 1; k <= 2; ++k) {
- if (k == 1) {
- p = indexw[wbegin - 1 + newfst];
- } else {
- p = indexw[wbegin - 1 + newlst];
- }
- offset = indexw[wbegin] - 1;
- dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin
- - 1], &p, &p, &rqtol, &rqtol, &offset, &
- work[wbegin], &wgap[wbegin], &werr[wbegin]
- , &work[indwrk], &iwork[iindwk], pivmin, &
- spdiam, &in, &iinfo);
- /* L55: */
- }
-
- if (wbegin + newlst - 1 < *dol || wbegin + newfst - 1
- > *dou) {
- /* if the cluster contains no desired eigenvalues */
- /* skip the computation of that branch of the rep. tree */
-
- /* We could skip before the refinement of the extremal */
- /* eigenvalues of the child, but then the representation */
- /* tree could be different from the one when nothing is */
- /* skipped. For this reason we skip at this place. */
- idone = idone + newlst - newfst + 1;
- goto L139;
- }
-
- /* Compute RRR of child cluster. */
- /* Note that the new RRR is stored in Z */
-
- /* DLARRF needs LWORK = 2*N */
- dlarrf_(&in, &d__[ibegin], &l[ibegin], &work[indld +
- ibegin - 1], &newfst, &newlst, &work[wbegin],
- &wgap[wbegin], &werr[wbegin], &spdiam, &lgap,
- &rgap, pivmin, &tau, &z__[ibegin + newftt *
- z_dim1], &z__[ibegin + (newftt + 1) * z_dim1],
- &work[indwrk], &iinfo);
- if (iinfo == 0) {
- /* a new RRR for the cluster was found by DLARRF */
- /* update shift and store it */
- ssigma = sigma + tau;
- z__[iend + (newftt + 1) * z_dim1] = ssigma;
- /* WORK() are the midpoints and WERR() the semi-width */
- /* Note that the entries in W are unchanged. */
- i__4 = newlst;
- for (k = newfst; k <= i__4; ++k) {
- fudge = eps * 3. * (d__1 = work[wbegin + k -
- 1], abs(d__1));
- work[wbegin + k - 1] -= tau;
- fudge += eps * 4. * (d__1 = work[wbegin + k -
- 1], abs(d__1));
- /* Fudge errors */
- werr[wbegin + k - 1] += fudge;
- /* Gaps are not fudged. Provided that WERR is small */
- /* when eigenvalues are close, a zero gap indicates */
- /* that a new representation is needed for resolving */
- /* the cluster. A fudge could lead to a wrong decision */
- /* of judging eigenvalues 'separated' which in */
- /* reality are not. This could have a negative impact */
- /* on the orthogonality of the computed eigenvectors. */
- /* L116: */
- }
- ++nclus;
- k = newcls + (nclus << 1);
- iwork[k - 1] = newfst;
- iwork[k] = newlst;
- } else {
- *info = -2;
- return;
- }
- } else {
-
- /* Compute eigenvector of singleton */
-
- iter = 0;
-
- tol = log((doublereal) in) * 4. * eps;
-
- k = newfst;
- windex = wbegin + k - 1;
- /* Computing MAX */
- i__4 = windex - 1;
- windmn = f2cmax(i__4,1);
- /* Computing MIN */
- i__4 = windex + 1;
- windpl = f2cmin(i__4,*m);
- lambda = work[windex];
- ++done;
- /* Check if eigenvector computation is to be skipped */
- if (windex < *dol || windex > *dou) {
- eskip = TRUE_;
- goto L125;
- } else {
- eskip = FALSE_;
- }
- left = work[windex] - werr[windex];
- right = work[windex] + werr[windex];
- indeig = indexw[windex];
- /* Note that since we compute the eigenpairs for a child, */
- /* all eigenvalue approximations are w.r.t the same shift. */
- /* In this case, the entries in WORK should be used for */
- /* computing the gaps since they exhibit even very small */
- /* differences in the eigenvalues, as opposed to the */
- /* entries in W which might "look" the same. */
- if (k == 1) {
- /* In the case RANGE='I' and with not much initial */
- /* accuracy in LAMBDA and VL, the formula */
- /* LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA ) */
- /* can lead to an overestimation of the left gap and */
- /* thus to inadequately early RQI 'convergence'. */
- /* Prevent this by forcing a small left gap. */
- /* Computing MAX */
- d__1 = abs(left), d__2 = abs(right);
- lgap = eps * f2cmax(d__1,d__2);
- } else {
- lgap = wgap[windmn];
- }
- if (k == im) {
- /* In the case RANGE='I' and with not much initial */
- /* accuracy in LAMBDA and VU, the formula */
- /* can lead to an overestimation of the right gap and */
- /* thus to inadequately early RQI 'convergence'. */
- /* Prevent this by forcing a small right gap. */
- /* Computing MAX */
- d__1 = abs(left), d__2 = abs(right);
- rgap = eps * f2cmax(d__1,d__2);
- } else {
- rgap = wgap[windex];
- }
- gap = f2cmin(lgap,rgap);
- if (k == 1 || k == im) {
- /* The eigenvector support can become wrong */
- /* because significant entries could be cut off due to a */
- /* large GAPTOL parameter in LAR1V. Prevent this. */
- gaptol = 0.;
- } else {
- gaptol = gap * eps;
- }
- isupmn = in;
- isupmx = 1;
- /* Update WGAP so that it holds the minimum gap */
- /* to the left or the right. This is crucial in the */
- /* case where bisection is used to ensure that the */
- /* eigenvalue is refined up to the required precision. */
- /* The correct value is restored afterwards. */
- savgap = wgap[windex];
- wgap[windex] = gap;
- /* We want to use the Rayleigh Quotient Correction */
- /* as often as possible since it converges quadratically */
- /* when we are close enough to the desired eigenvalue. */
- /* However, the Rayleigh Quotient can have the wrong sign */
- /* and lead us away from the desired eigenvalue. In this */
- /* case, the best we can do is to use bisection. */
- usedbs = FALSE_;
- usedrq = FALSE_;
- /* Bisection is initially turned off unless it is forced */
- needbs = ! tryrqc;
- L120:
- /* Check if bisection should be used to refine eigenvalue */
- if (needbs) {
- /* Take the bisection as new iterate */
- usedbs = TRUE_;
- itmp1 = iwork[iindr + windex];
- offset = indexw[wbegin] - 1;
- d__1 = eps * 2.;
- dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin
- - 1], &indeig, &indeig, &c_b5, &d__1, &
- offset, &work[wbegin], &wgap[wbegin], &
- werr[wbegin], &work[indwrk], &iwork[
- iindwk], pivmin, &spdiam, &itmp1, &iinfo);
- if (iinfo != 0) {
- *info = -3;
- return;
- }
- lambda = work[windex];
- /* Reset twist index from inaccurate LAMBDA to */
- /* force computation of true MINGMA */
- iwork[iindr + windex] = 0;
- }
- /* Given LAMBDA, compute the eigenvector. */
- L__1 = ! usedbs;
- dlar1v_(&in, &c__1, &in, &lambda, &d__[ibegin], &l[
- ibegin], &work[indld + ibegin - 1], &work[
- indlld + ibegin - 1], pivmin, &gaptol, &z__[
- ibegin + windex * z_dim1], &L__1, &negcnt, &
- ztz, &mingma, &iwork[iindr + windex], &isuppz[
- (windex << 1) - 1], &nrminv, &resid, &rqcorr,
- &work[indwrk]);
- if (iter == 0) {
- bstres = resid;
- bstw = lambda;
- } else if (resid < bstres) {
- bstres = resid;
- bstw = lambda;
- }
- /* Computing MIN */
- i__4 = isupmn, i__5 = isuppz[(windex << 1) - 1];
- isupmn = f2cmin(i__4,i__5);
- /* Computing MAX */
- i__4 = isupmx, i__5 = isuppz[windex * 2];
- isupmx = f2cmax(i__4,i__5);
- ++iter;
- /* sin alpha <= |resid|/gap */
- /* Note that both the residual and the gap are */
- /* proportional to the matrix, so ||T|| doesn't play */
- /* a role in the quotient */
-
- /* Convergence test for Rayleigh-Quotient iteration */
- /* (omitted when Bisection has been used) */
-
- if (resid > tol * gap && abs(rqcorr) > rqtol * abs(
- lambda) && ! usedbs) {
- /* We need to check that the RQCORR update doesn't */
- /* move the eigenvalue away from the desired one and */
- /* towards a neighbor. -> protection with bisection */
- if (indeig <= negcnt) {
- /* The wanted eigenvalue lies to the left */
- sgndef = -1.;
- } else {
- /* The wanted eigenvalue lies to the right */
- sgndef = 1.;
- }
- /* We only use the RQCORR if it improves the */
- /* the iterate reasonably. */
- if (rqcorr * sgndef >= 0. && lambda + rqcorr <=
- right && lambda + rqcorr >= left) {
- usedrq = TRUE_;
- /* Store new midpoint of bisection interval in WORK */
- if (sgndef == 1.) {
- /* The current LAMBDA is on the left of the true */
- /* eigenvalue */
- left = lambda;
- /* We prefer to assume that the error estimate */
- /* is correct. We could make the interval not */
- /* as a bracket but to be modified if the RQCORR */
- /* chooses to. In this case, the RIGHT side should */
- /* be modified as follows: */
- /* RIGHT = MAX(RIGHT, LAMBDA + RQCORR) */
- } else {
- /* The current LAMBDA is on the right of the true */
- /* eigenvalue */
- right = lambda;
- /* See comment about assuming the error estimate is */
- /* correct above. */
- /* LEFT = MIN(LEFT, LAMBDA + RQCORR) */
- }
- work[windex] = (right + left) * .5;
- /* Take RQCORR since it has the correct sign and */
- /* improves the iterate reasonably */
- lambda += rqcorr;
- /* Update width of error interval */
- werr[windex] = (right - left) * .5;
- } else {
- needbs = TRUE_;
- }
- if (right - left < rqtol * abs(lambda)) {
- /* The eigenvalue is computed to bisection accuracy */
- /* compute eigenvector and stop */
- usedbs = TRUE_;
- goto L120;
- } else if (iter < 10) {
- goto L120;
- } else if (iter == 10) {
- needbs = TRUE_;
- goto L120;
- } else {
- *info = 5;
- return;
- }
- } else {
- stp2ii = FALSE_;
- if (usedrq && usedbs && bstres <= resid) {
- lambda = bstw;
- stp2ii = TRUE_;
- }
- if (stp2ii) {
- /* improve error angle by second step */
- L__1 = ! usedbs;
- dlar1v_(&in, &c__1, &in, &lambda, &d__[ibegin]
- , &l[ibegin], &work[indld + ibegin -
- 1], &work[indlld + ibegin - 1],
- pivmin, &gaptol, &z__[ibegin + windex
- * z_dim1], &L__1, &negcnt, &ztz, &
- mingma, &iwork[iindr + windex], &
- isuppz[(windex << 1) - 1], &nrminv, &
- resid, &rqcorr, &work[indwrk]);
- }
- work[windex] = lambda;
- }
-
- /* Compute FP-vector support w.r.t. whole matrix */
-
- isuppz[(windex << 1) - 1] += oldien;
- isuppz[windex * 2] += oldien;
- zfrom = isuppz[(windex << 1) - 1];
- zto = isuppz[windex * 2];
- isupmn += oldien;
- isupmx += oldien;
- /* Ensure vector is ok if support in the RQI has changed */
- if (isupmn < zfrom) {
- i__4 = zfrom - 1;
- for (ii = isupmn; ii <= i__4; ++ii) {
- z__[ii + windex * z_dim1] = 0.;
- /* L122: */
- }
- }
- if (isupmx > zto) {
- i__4 = isupmx;
- for (ii = zto + 1; ii <= i__4; ++ii) {
- z__[ii + windex * z_dim1] = 0.;
- /* L123: */
- }
- }
- i__4 = zto - zfrom + 1;
- dscal_(&i__4, &nrminv, &z__[zfrom + windex * z_dim1],
- &c__1);
- L125:
- /* Update W */
- w[windex] = lambda + sigma;
- /* Recompute the gaps on the left and right */
- /* But only allow them to become larger and not */
- /* smaller (which can only happen through "bad" */
- /* cancellation and doesn't reflect the theory */
- /* where the initial gaps are underestimated due */
- /* to WERR being too crude.) */
- if (! eskip) {
- if (k > 1) {
- /* Computing MAX */
- d__1 = wgap[windmn], d__2 = w[windex] - werr[
- windex] - w[windmn] - werr[windmn];
- wgap[windmn] = f2cmax(d__1,d__2);
- }
- if (windex < wend) {
- /* Computing MAX */
- d__1 = savgap, d__2 = w[windpl] - werr[windpl]
- - w[windex] - werr[windex];
- wgap[windex] = f2cmax(d__1,d__2);
- }
- }
- ++idone;
- }
- /* here ends the code for the current child */
-
- L139:
- /* Proceed to any remaining child nodes */
- newfst = j + 1;
- L140:
- ;
- }
- /* L150: */
- }
- ++ndepth;
- goto L40;
- }
- ibegin = iend + 1;
- wbegin = wend + 1;
- L170:
- ;
- }
-
- return;
-
- /* End of DLARRV */
-
- } /* dlarrv_ */
|