|
- *> \brief \b DLAQR2 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAQR2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
- * IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
- * LDT, NV, WV, LDWV, WORK, LWORK )
- *
- * .. Scalar Arguments ..
- * INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
- * $ LDZ, LWORK, N, ND, NH, NS, NV, NW
- * LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- * DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
- * $ V( LDV, * ), WORK( * ), WV( LDWV, * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAQR2 is identical to DLAQR3 except that it avoids
- *> recursion by calling DLAHQR instead of DLAQR4.
- *>
- *> Aggressive early deflation:
- *>
- *> This subroutine accepts as input an upper Hessenberg matrix
- *> H and performs an orthogonal similarity transformation
- *> designed to detect and deflate fully converged eigenvalues from
- *> a trailing principal submatrix. On output H has been over-
- *> written by a new Hessenberg matrix that is a perturbation of
- *> an orthogonal similarity transformation of H. It is to be
- *> hoped that the final version of H has many zero subdiagonal
- *> entries.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTT
- *> \verbatim
- *> WANTT is LOGICAL
- *> If .TRUE., then the Hessenberg matrix H is fully updated
- *> so that the quasi-triangular Schur factor may be
- *> computed (in cooperation with the calling subroutine).
- *> If .FALSE., then only enough of H is updated to preserve
- *> the eigenvalues.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is LOGICAL
- *> If .TRUE., then the orthogonal matrix Z is updated so
- *> so that the orthogonal Schur factor may be computed
- *> (in cooperation with the calling subroutine).
- *> If .FALSE., then Z is not referenced.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix H and (if WANTZ is .TRUE.) the
- *> order of the orthogonal matrix Z.
- *> \endverbatim
- *>
- *> \param[in] KTOP
- *> \verbatim
- *> KTOP is INTEGER
- *> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
- *> KBOT and KTOP together determine an isolated block
- *> along the diagonal of the Hessenberg matrix.
- *> \endverbatim
- *>
- *> \param[in] KBOT
- *> \verbatim
- *> KBOT is INTEGER
- *> It is assumed without a check that either
- *> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
- *> determine an isolated block along the diagonal of the
- *> Hessenberg matrix.
- *> \endverbatim
- *>
- *> \param[in] NW
- *> \verbatim
- *> NW is INTEGER
- *> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
- *> \endverbatim
- *>
- *> \param[in,out] H
- *> \verbatim
- *> H is DOUBLE PRECISION array, dimension (LDH,N)
- *> On input the initial N-by-N section of H stores the
- *> Hessenberg matrix undergoing aggressive early deflation.
- *> On output H has been transformed by an orthogonal
- *> similarity transformation, perturbed, and the returned
- *> to Hessenberg form that (it is to be hoped) has some
- *> zero subdiagonal entries.
- *> \endverbatim
- *>
- *> \param[in] LDH
- *> \verbatim
- *> LDH is INTEGER
- *> Leading dimension of H just as declared in the calling
- *> subroutine. N <= LDH
- *> \endverbatim
- *>
- *> \param[in] ILOZ
- *> \verbatim
- *> ILOZ is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHIZ
- *> \verbatim
- *> IHIZ is INTEGER
- *> Specify the rows of Z to which transformations must be
- *> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (LDZ,N)
- *> IF WANTZ is .TRUE., then on output, the orthogonal
- *> similarity transformation mentioned above has been
- *> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
- *> If WANTZ is .FALSE., then Z is unreferenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> The leading dimension of Z just as declared in the
- *> calling subroutine. 1 <= LDZ.
- *> \endverbatim
- *>
- *> \param[out] NS
- *> \verbatim
- *> NS is INTEGER
- *> The number of unconverged (ie approximate) eigenvalues
- *> returned in SR and SI that may be used as shifts by the
- *> calling subroutine.
- *> \endverbatim
- *>
- *> \param[out] ND
- *> \verbatim
- *> ND is INTEGER
- *> The number of converged eigenvalues uncovered by this
- *> subroutine.
- *> \endverbatim
- *>
- *> \param[out] SR
- *> \verbatim
- *> SR is DOUBLE PRECISION array, dimension (KBOT)
- *> \endverbatim
- *>
- *> \param[out] SI
- *> \verbatim
- *> SI is DOUBLE PRECISION array, dimension (KBOT)
- *> On output, the real and imaginary parts of approximate
- *> eigenvalues that may be used for shifts are stored in
- *> SR(KBOT-ND-NS+1) through SR(KBOT-ND) and
- *> SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively.
- *> The real and imaginary parts of converged eigenvalues
- *> are stored in SR(KBOT-ND+1) through SR(KBOT) and
- *> SI(KBOT-ND+1) through SI(KBOT), respectively.
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is DOUBLE PRECISION array, dimension (LDV,NW)
- *> An NW-by-NW work array.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of V just as declared in the
- *> calling subroutine. NW <= LDV
- *> \endverbatim
- *>
- *> \param[in] NH
- *> \verbatim
- *> NH is INTEGER
- *> The number of columns of T. NH >= NW.
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is DOUBLE PRECISION array, dimension (LDT,NW)
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of T just as declared in the
- *> calling subroutine. NW <= LDT
- *> \endverbatim
- *>
- *> \param[in] NV
- *> \verbatim
- *> NV is INTEGER
- *> The number of rows of work array WV available for
- *> workspace. NV >= NW.
- *> \endverbatim
- *>
- *> \param[out] WV
- *> \verbatim
- *> WV is DOUBLE PRECISION array, dimension (LDWV,NW)
- *> \endverbatim
- *>
- *> \param[in] LDWV
- *> \verbatim
- *> LDWV is INTEGER
- *> The leading dimension of W just as declared in the
- *> calling subroutine. NW <= LDV
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (LWORK)
- *> On exit, WORK(1) is set to an estimate of the optimal value
- *> of LWORK for the given values of N, NW, KTOP and KBOT.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the work array WORK. LWORK = 2*NW
- *> suffices, but greater efficiency may result from larger
- *> values of LWORK.
- *>
- *> If LWORK = -1, then a workspace query is assumed; DLAQR2
- *> only estimates the optimal workspace size for the given
- *> values of N, NW, KTOP and KBOT. The estimate is returned
- *> in WORK(1). No error message related to LWORK is issued
- *> by XERBLA. Neither H nor Z are accessed.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Karen Braman and Ralph Byers, Department of Mathematics,
- *> University of Kansas, USA
- *>
- * =====================================================================
- SUBROUTINE DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
- $ IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T,
- $ LDT, NV, WV, LDWV, WORK, LWORK )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
- $ LDZ, LWORK, N, ND, NH, NS, NV, NW
- LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ),
- $ V( LDV, * ), WORK( * ), WV( LDWV, * ),
- $ Z( LDZ, * )
- * ..
- *
- * ================================================================
- * .. Parameters ..
- DOUBLE PRECISION ZERO, ONE
- PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
- * ..
- * .. Local Scalars ..
- DOUBLE PRECISION AA, BB, BETA, CC, CS, DD, EVI, EVK, FOO, S,
- $ SAFMAX, SAFMIN, SMLNUM, SN, TAU, ULP
- INTEGER I, IFST, ILST, INFO, INFQR, J, JW, K, KCOL,
- $ KEND, KLN, KROW, KWTOP, LTOP, LWK1, LWK2,
- $ LWKOPT
- LOGICAL BULGE, SORTED
- * ..
- * .. External Functions ..
- DOUBLE PRECISION DLAMCH
- EXTERNAL DLAMCH
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DGEHRD, DGEMM, DLABAD, DLACPY, DLAHQR,
- $ DLANV2, DLARF, DLARFG, DLASET, DORMHR, DTREXC
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, INT, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * ==== Estimate optimal workspace. ====
- *
- JW = MIN( NW, KBOT-KTOP+1 )
- IF( JW.LE.2 ) THEN
- LWKOPT = 1
- ELSE
- *
- * ==== Workspace query call to DGEHRD ====
- *
- CALL DGEHRD( JW, 1, JW-1, T, LDT, WORK, WORK, -1, INFO )
- LWK1 = INT( WORK( 1 ) )
- *
- * ==== Workspace query call to DORMHR ====
- *
- CALL DORMHR( 'R', 'N', JW, JW, 1, JW-1, T, LDT, WORK, V, LDV,
- $ WORK, -1, INFO )
- LWK2 = INT( WORK( 1 ) )
- *
- * ==== Optimal workspace ====
- *
- LWKOPT = JW + MAX( LWK1, LWK2 )
- END IF
- *
- * ==== Quick return in case of workspace query. ====
- *
- IF( LWORK.EQ.-1 ) THEN
- WORK( 1 ) = DBLE( LWKOPT )
- RETURN
- END IF
- *
- * ==== Nothing to do ...
- * ... for an empty active block ... ====
- NS = 0
- ND = 0
- WORK( 1 ) = ONE
- IF( KTOP.GT.KBOT )
- $ RETURN
- * ... nor for an empty deflation window. ====
- IF( NW.LT.1 )
- $ RETURN
- *
- * ==== Machine constants ====
- *
- SAFMIN = DLAMCH( 'SAFE MINIMUM' )
- SAFMAX = ONE / SAFMIN
- CALL DLABAD( SAFMIN, SAFMAX )
- ULP = DLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( DBLE( N ) / ULP )
- *
- * ==== Setup deflation window ====
- *
- JW = MIN( NW, KBOT-KTOP+1 )
- KWTOP = KBOT - JW + 1
- IF( KWTOP.EQ.KTOP ) THEN
- S = ZERO
- ELSE
- S = H( KWTOP, KWTOP-1 )
- END IF
- *
- IF( KBOT.EQ.KWTOP ) THEN
- *
- * ==== 1-by-1 deflation window: not much to do ====
- *
- SR( KWTOP ) = H( KWTOP, KWTOP )
- SI( KWTOP ) = ZERO
- NS = 1
- ND = 0
- IF( ABS( S ).LE.MAX( SMLNUM, ULP*ABS( H( KWTOP, KWTOP ) ) ) )
- $ THEN
- NS = 0
- ND = 1
- IF( KWTOP.GT.KTOP )
- $ H( KWTOP, KWTOP-1 ) = ZERO
- END IF
- WORK( 1 ) = ONE
- RETURN
- END IF
- *
- * ==== Convert to spike-triangular form. (In case of a
- * . rare QR failure, this routine continues to do
- * . aggressive early deflation using that part of
- * . the deflation window that converged using INFQR
- * . here and there to keep track.) ====
- *
- CALL DLACPY( 'U', JW, JW, H( KWTOP, KWTOP ), LDH, T, LDT )
- CALL DCOPY( JW-1, H( KWTOP+1, KWTOP ), LDH+1, T( 2, 1 ), LDT+1 )
- *
- CALL DLASET( 'A', JW, JW, ZERO, ONE, V, LDV )
- CALL DLAHQR( .true., .true., JW, 1, JW, T, LDT, SR( KWTOP ),
- $ SI( KWTOP ), 1, JW, V, LDV, INFQR )
- *
- * ==== DTREXC needs a clean margin near the diagonal ====
- *
- DO 10 J = 1, JW - 3
- T( J+2, J ) = ZERO
- T( J+3, J ) = ZERO
- 10 CONTINUE
- IF( JW.GT.2 )
- $ T( JW, JW-2 ) = ZERO
- *
- * ==== Deflation detection loop ====
- *
- NS = JW
- ILST = INFQR + 1
- 20 CONTINUE
- IF( ILST.LE.NS ) THEN
- IF( NS.EQ.1 ) THEN
- BULGE = .FALSE.
- ELSE
- BULGE = T( NS, NS-1 ).NE.ZERO
- END IF
- *
- * ==== Small spike tip test for deflation ====
- *
- IF( .NOT.BULGE ) THEN
- *
- * ==== Real eigenvalue ====
- *
- FOO = ABS( T( NS, NS ) )
- IF( FOO.EQ.ZERO )
- $ FOO = ABS( S )
- IF( ABS( S*V( 1, NS ) ).LE.MAX( SMLNUM, ULP*FOO ) ) THEN
- *
- * ==== Deflatable ====
- *
- NS = NS - 1
- ELSE
- *
- * ==== Undeflatable. Move it up out of the way.
- * . (DTREXC can not fail in this case.) ====
- *
- IFST = NS
- CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
- $ INFO )
- ILST = ILST + 1
- END IF
- ELSE
- *
- * ==== Complex conjugate pair ====
- *
- FOO = ABS( T( NS, NS ) ) + SQRT( ABS( T( NS, NS-1 ) ) )*
- $ SQRT( ABS( T( NS-1, NS ) ) )
- IF( FOO.EQ.ZERO )
- $ FOO = ABS( S )
- IF( MAX( ABS( S*V( 1, NS ) ), ABS( S*V( 1, NS-1 ) ) ).LE.
- $ MAX( SMLNUM, ULP*FOO ) ) THEN
- *
- * ==== Deflatable ====
- *
- NS = NS - 2
- ELSE
- *
- * ==== Undeflatable. Move them up out of the way.
- * . Fortunately, DTREXC does the right thing with
- * . ILST in case of a rare exchange failure. ====
- *
- IFST = NS
- CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
- $ INFO )
- ILST = ILST + 2
- END IF
- END IF
- *
- * ==== End deflation detection loop ====
- *
- GO TO 20
- END IF
- *
- * ==== Return to Hessenberg form ====
- *
- IF( NS.EQ.0 )
- $ S = ZERO
- *
- IF( NS.LT.JW ) THEN
- *
- * ==== sorting diagonal blocks of T improves accuracy for
- * . graded matrices. Bubble sort deals well with
- * . exchange failures. ====
- *
- SORTED = .false.
- I = NS + 1
- 30 CONTINUE
- IF( SORTED )
- $ GO TO 50
- SORTED = .true.
- *
- KEND = I - 1
- I = INFQR + 1
- IF( I.EQ.NS ) THEN
- K = I + 1
- ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
- K = I + 1
- ELSE
- K = I + 2
- END IF
- 40 CONTINUE
- IF( K.LE.KEND ) THEN
- IF( K.EQ.I+1 ) THEN
- EVI = ABS( T( I, I ) )
- ELSE
- EVI = ABS( T( I, I ) ) + SQRT( ABS( T( I+1, I ) ) )*
- $ SQRT( ABS( T( I, I+1 ) ) )
- END IF
- *
- IF( K.EQ.KEND ) THEN
- EVK = ABS( T( K, K ) )
- ELSE IF( T( K+1, K ).EQ.ZERO ) THEN
- EVK = ABS( T( K, K ) )
- ELSE
- EVK = ABS( T( K, K ) ) + SQRT( ABS( T( K+1, K ) ) )*
- $ SQRT( ABS( T( K, K+1 ) ) )
- END IF
- *
- IF( EVI.GE.EVK ) THEN
- I = K
- ELSE
- SORTED = .false.
- IFST = I
- ILST = K
- CALL DTREXC( 'V', JW, T, LDT, V, LDV, IFST, ILST, WORK,
- $ INFO )
- IF( INFO.EQ.0 ) THEN
- I = ILST
- ELSE
- I = K
- END IF
- END IF
- IF( I.EQ.KEND ) THEN
- K = I + 1
- ELSE IF( T( I+1, I ).EQ.ZERO ) THEN
- K = I + 1
- ELSE
- K = I + 2
- END IF
- GO TO 40
- END IF
- GO TO 30
- 50 CONTINUE
- END IF
- *
- * ==== Restore shift/eigenvalue array from T ====
- *
- I = JW
- 60 CONTINUE
- IF( I.GE.INFQR+1 ) THEN
- IF( I.EQ.INFQR+1 ) THEN
- SR( KWTOP+I-1 ) = T( I, I )
- SI( KWTOP+I-1 ) = ZERO
- I = I - 1
- ELSE IF( T( I, I-1 ).EQ.ZERO ) THEN
- SR( KWTOP+I-1 ) = T( I, I )
- SI( KWTOP+I-1 ) = ZERO
- I = I - 1
- ELSE
- AA = T( I-1, I-1 )
- CC = T( I, I-1 )
- BB = T( I-1, I )
- DD = T( I, I )
- CALL DLANV2( AA, BB, CC, DD, SR( KWTOP+I-2 ),
- $ SI( KWTOP+I-2 ), SR( KWTOP+I-1 ),
- $ SI( KWTOP+I-1 ), CS, SN )
- I = I - 2
- END IF
- GO TO 60
- END IF
- *
- IF( NS.LT.JW .OR. S.EQ.ZERO ) THEN
- IF( NS.GT.1 .AND. S.NE.ZERO ) THEN
- *
- * ==== Reflect spike back into lower triangle ====
- *
- CALL DCOPY( NS, V, LDV, WORK, 1 )
- BETA = WORK( 1 )
- CALL DLARFG( NS, BETA, WORK( 2 ), 1, TAU )
- WORK( 1 ) = ONE
- *
- CALL DLASET( 'L', JW-2, JW-2, ZERO, ZERO, T( 3, 1 ), LDT )
- *
- CALL DLARF( 'L', NS, JW, WORK, 1, TAU, T, LDT,
- $ WORK( JW+1 ) )
- CALL DLARF( 'R', NS, NS, WORK, 1, TAU, T, LDT,
- $ WORK( JW+1 ) )
- CALL DLARF( 'R', JW, NS, WORK, 1, TAU, V, LDV,
- $ WORK( JW+1 ) )
- *
- CALL DGEHRD( JW, 1, NS, T, LDT, WORK, WORK( JW+1 ),
- $ LWORK-JW, INFO )
- END IF
- *
- * ==== Copy updated reduced window into place ====
- *
- IF( KWTOP.GT.1 )
- $ H( KWTOP, KWTOP-1 ) = S*V( 1, 1 )
- CALL DLACPY( 'U', JW, JW, T, LDT, H( KWTOP, KWTOP ), LDH )
- CALL DCOPY( JW-1, T( 2, 1 ), LDT+1, H( KWTOP+1, KWTOP ),
- $ LDH+1 )
- *
- * ==== Accumulate orthogonal matrix in order update
- * . H and Z, if requested. ====
- *
- IF( NS.GT.1 .AND. S.NE.ZERO )
- $ CALL DORMHR( 'R', 'N', JW, NS, 1, NS, T, LDT, WORK, V, LDV,
- $ WORK( JW+1 ), LWORK-JW, INFO )
- *
- * ==== Update vertical slab in H ====
- *
- IF( WANTT ) THEN
- LTOP = 1
- ELSE
- LTOP = KTOP
- END IF
- DO 70 KROW = LTOP, KWTOP - 1, NV
- KLN = MIN( NV, KWTOP-KROW )
- CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, H( KROW, KWTOP ),
- $ LDH, V, LDV, ZERO, WV, LDWV )
- CALL DLACPY( 'A', KLN, JW, WV, LDWV, H( KROW, KWTOP ), LDH )
- 70 CONTINUE
- *
- * ==== Update horizontal slab in H ====
- *
- IF( WANTT ) THEN
- DO 80 KCOL = KBOT + 1, N, NH
- KLN = MIN( NH, N-KCOL+1 )
- CALL DGEMM( 'C', 'N', JW, KLN, JW, ONE, V, LDV,
- $ H( KWTOP, KCOL ), LDH, ZERO, T, LDT )
- CALL DLACPY( 'A', JW, KLN, T, LDT, H( KWTOP, KCOL ),
- $ LDH )
- 80 CONTINUE
- END IF
- *
- * ==== Update vertical slab in Z ====
- *
- IF( WANTZ ) THEN
- DO 90 KROW = ILOZ, IHIZ, NV
- KLN = MIN( NV, IHIZ-KROW+1 )
- CALL DGEMM( 'N', 'N', KLN, JW, JW, ONE, Z( KROW, KWTOP ),
- $ LDZ, V, LDV, ZERO, WV, LDWV )
- CALL DLACPY( 'A', KLN, JW, WV, LDWV, Z( KROW, KWTOP ),
- $ LDZ )
- 90 CONTINUE
- END IF
- END IF
- *
- * ==== Return the number of deflations ... ====
- *
- ND = JW - NS
- *
- * ==== ... and the number of shifts. (Subtracting
- * . INFQR from the spike length takes care
- * . of the case of a rare QR failure while
- * . calculating eigenvalues of the deflation
- * . window.) ====
- *
- NS = NS - INFQR
- *
- * ==== Return optimal workspace. ====
- *
- WORK( 1 ) = DBLE( LWKOPT )
- *
- * ==== End of DLAQR2 ====
- *
- END
|