|
- *> \brief \b DLAMTSQR
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
- * $ LDT, C, LDC, WORK, LWORK, INFO )
- *
- *
- * .. Scalar Arguments ..
- * CHARACTER SIDE, TRANS
- * INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
- * ..
- * .. Array Arguments ..
- * DOUBLE A( LDA, * ), WORK( * ), C(LDC, * ),
- * $ T( LDT, * )
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAMTSQR overwrites the general real M-by-N matrix C with
- *>
- *>
- *> SIDE = 'L' SIDE = 'R'
- *> TRANS = 'N': Q * C C * Q
- *> TRANS = 'T': Q**T * C C * Q**T
- *> where Q is a real orthogonal matrix defined as the product
- *> of blocked elementary reflectors computed by tall skinny
- *> QR factorization (DLATSQR)
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> = 'L': apply Q or Q**T from the Left;
- *> = 'R': apply Q or Q**T from the Right.
- *> \endverbatim
- *>
- *> \param[in] TRANS
- *> \verbatim
- *> TRANS is CHARACTER*1
- *> = 'N': No transpose, apply Q;
- *> = 'T': Transpose, apply Q**T.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >=0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix C. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] K
- *> \verbatim
- *> K is INTEGER
- *> The number of elementary reflectors whose product defines
- *> the matrix Q. M >= K >= 0;
- *>
- *> \endverbatim
- *>
- *> \param[in] MB
- *> \verbatim
- *> MB is INTEGER
- *> The block size to be used in the blocked QR.
- *> MB > N. (must be the same as DLATSQR)
- *> \endverbatim
- *>
- *> \param[in] NB
- *> \verbatim
- *> NB is INTEGER
- *> The column block size to be used in the blocked QR.
- *> N >= NB >= 1.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,K)
- *> The i-th column must contain the vector which defines the
- *> blockedelementary reflector H(i), for i = 1,2,...,k, as
- *> returned by DLATSQR in the first k columns of
- *> its array argument A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A.
- *> If SIDE = 'L', LDA >= max(1,M);
- *> if SIDE = 'R', LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] T
- *> \verbatim
- *> T is DOUBLE PRECISION array, dimension
- *> ( N * Number of blocks(CEIL(M-K/MB-K)),
- *> The blocked upper triangular block reflectors stored in compact form
- *> as a sequence of upper triangular blocks. See below
- *> for further details.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= NB.
- *> \endverbatim
- *>
- *> \param[in,out] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (LDC,N)
- *> On entry, the M-by-N matrix C.
- *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
- *> \endverbatim
- *>
- *> \param[in] LDC
- *> \verbatim
- *> LDC is INTEGER
- *> The leading dimension of the array C. LDC >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
- *> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
- *> \endverbatim
- *>
- *> \param[in] LWORK
- *> \verbatim
- *> LWORK is INTEGER
- *> The dimension of the array WORK.
- *> If MIN(M,N,K) = 0, LWORK >= 1.
- *> If SIDE = 'L', LWORK >= max(1,N*NB).
- *> If SIDE = 'R', LWORK >= max(1,MB*NB).
- *>
- *> If LWORK = -1, then a workspace query is assumed; the routine
- *> only calculates the minimal size of the WORK array, returns
- *> this value as the first entry of the WORK array, and no error
- *> message related to LWORK is issued by XERBLA.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
- *> representing Q as a product of other orthogonal matrices
- *> Q = Q(1) * Q(2) * . . . * Q(k)
- *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
- *> Q(1) zeros out the subdiagonal entries of rows 1:MB of A
- *> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
- *> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
- *> . . .
- *>
- *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
- *> stored under the diagonal of rows 1:MB of A, and by upper triangular
- *> block reflectors, stored in array T(1:LDT,1:N).
- *> For more information see Further Details in GEQRT.
- *>
- *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
- *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
- *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
- *> The last Q(k) may use fewer rows.
- *> For more information see Further Details in TPQRT.
- *>
- *> For more details of the overall algorithm, see the description of
- *> Sequential TSQR in Section 2.2 of [1].
- *>
- *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
- *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
- *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
- *> \endverbatim
- *>
- *> \ingroup lamtsqr
- *>
- * =====================================================================
- SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
- $ LDT, C, LDC, WORK, LWORK, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER SIDE, TRANS
- INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
- * ..
- * .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), WORK( * ), C( LDC, * ),
- $ T( LDT, * )
- * ..
- *
- * =====================================================================
- *
- * ..
- * .. Local Scalars ..
- LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
- INTEGER I, II, KK, LW, CTR, Q, MINMNK, LWMIN
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL DGEMQRT, DTPMQRT, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- LQUERY = ( LWORK.EQ.-1 )
- NOTRAN = LSAME( TRANS, 'N' )
- TRAN = LSAME( TRANS, 'T' )
- LEFT = LSAME( SIDE, 'L' )
- RIGHT = LSAME( SIDE, 'R' )
- IF( LEFT ) THEN
- LW = N * NB
- Q = M
- ELSE
- LW = MB * NB
- Q = N
- END IF
- *
- MINMNK = MIN( M, N, K )
- IF( MINMNK.EQ.0 ) THEN
- LWMIN = 1
- ELSE
- LWMIN = MAX( 1, LW )
- END IF
- *
- IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
- INFO = -1
- ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
- INFO = -2
- ELSE IF( M.LT.K ) THEN
- INFO = -3
- ELSE IF( N.LT.0 ) THEN
- INFO = -4
- ELSE IF( K.LT.0 ) THEN
- INFO = -5
- ELSE IF( K.LT.NB .OR. NB.LT.1 ) THEN
- INFO = -7
- ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN
- INFO = -9
- ELSE IF( LDT.LT.MAX( 1, NB ) ) THEN
- INFO = -11
- ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
- INFO = -13
- ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN
- INFO = -15
- END IF
- *
- IF( INFO.EQ.0 ) THEN
- WORK( 1 ) = LWMIN
- END IF
- *
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLAMTSQR', -INFO )
- RETURN
- ELSE IF( LQUERY ) THEN
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( MINMNK.EQ.0 ) THEN
- RETURN
- END IF
- *
- * Determine the block size if it is tall skinny or short and wide
- *
- IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
- CALL DGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
- $ T, LDT, C, LDC, WORK, INFO )
- RETURN
- END IF
- *
- IF(LEFT.AND.NOTRAN) THEN
- *
- * Multiply Q to the last block of C
- *
- KK = MOD((M-K),(MB-K))
- CTR = (M-K)/(MB-K)
- IF (KK.GT.0) THEN
- II=M-KK+1
- CALL DTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA,
- $ T(1,CTR*K+1),LDT , C(1,1), LDC,
- $ C(II,1), LDC, WORK, INFO )
- ELSE
- II=M+1
- END IF
- *
- DO I=II-(MB-K),MB+1,-(MB-K)
- *
- * Multiply Q to the current block of C (I:I+MB,1:N)
- *
- CTR = CTR - 1
- CALL DTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA,
- $ T(1,CTR*K+1),LDT, C(1,1), LDC,
- $ C(I,1), LDC, WORK, INFO )
- *
- END DO
- *
- * Multiply Q to the first block of C (1:MB,1:N)
- *
- CALL DGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T
- $ ,LDT ,C(1,1), LDC, WORK, INFO )
- *
- ELSE IF (LEFT.AND.TRAN) THEN
- *
- * Multiply Q to the first block of C
- *
- KK = MOD((M-K),(MB-K))
- II=M-KK+1
- CTR = 1
- CALL DGEMQRT('L','T',MB , N, K, NB, A(1,1), LDA, T
- $ ,LDT ,C(1,1), LDC, WORK, INFO )
- *
- DO I=MB+1,II-MB+K,(MB-K)
- *
- * Multiply Q to the current block of C (I:I+MB,1:N)
- *
- CALL DTPMQRT('L','T',MB-K , N, K, 0,NB, A(I,1), LDA,
- $ T(1,CTR * K + 1),LDT, C(1,1), LDC,
- $ C(I,1), LDC, WORK, INFO )
- CTR = CTR + 1
- *
- END DO
- IF(II.LE.M) THEN
- *
- * Multiply Q to the last block of C
- *
- CALL DTPMQRT('L','T',KK , N, K, 0,NB, A(II,1), LDA,
- $ T(1,CTR * K + 1), LDT, C(1,1), LDC,
- $ C(II,1), LDC, WORK, INFO )
- *
- END IF
- *
- ELSE IF(RIGHT.AND.TRAN) THEN
- *
- * Multiply Q to the last block of C
- *
- KK = MOD((N-K),(MB-K))
- CTR = (N-K)/(MB-K)
- IF (KK.GT.0) THEN
- II=N-KK+1
- CALL DTPMQRT('R','T',M , KK, K, 0, NB, A(II,1), LDA,
- $ T(1,CTR*K+1), LDT, C(1,1), LDC,
- $ C(1,II), LDC, WORK, INFO )
- ELSE
- II=N+1
- END IF
- *
- DO I=II-(MB-K),MB+1,-(MB-K)
- *
- * Multiply Q to the current block of C (1:M,I:I+MB)
- *
- CTR = CTR - 1
- CALL DTPMQRT('R','T',M , MB-K, K, 0,NB, A(I,1), LDA,
- $ T(1,CTR*K+1), LDT, C(1,1), LDC,
- $ C(1,I), LDC, WORK, INFO )
- *
- END DO
- *
- * Multiply Q to the first block of C (1:M,1:MB)
- *
- CALL DGEMQRT('R','T',M , MB, K, NB, A(1,1), LDA, T
- $ ,LDT ,C(1,1), LDC, WORK, INFO )
- *
- ELSE IF (RIGHT.AND.NOTRAN) THEN
- *
- * Multiply Q to the first block of C
- *
- KK = MOD((N-K),(MB-K))
- II=N-KK+1
- CTR = 1
- CALL DGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T
- $ ,LDT ,C(1,1), LDC, WORK, INFO )
- *
- DO I=MB+1,II-MB+K,(MB-K)
- *
- * Multiply Q to the current block of C (1:M,I:I+MB)
- *
- CALL DTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA,
- $ T(1, CTR * K + 1),LDT, C(1,1), LDC,
- $ C(1,I), LDC, WORK, INFO )
- CTR = CTR + 1
- *
- END DO
- IF(II.LE.N) THEN
- *
- * Multiply Q to the last block of C
- *
- CALL DTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA,
- $ T(1, CTR * K + 1),LDT, C(1,1), LDC,
- $ C(1,II), LDC, WORK, INFO )
- *
- END IF
- *
- END IF
- *
- WORK( 1 ) = LWMIN
- *
- RETURN
- *
- * End of DLAMTSQR
- *
- END
|