|
- *> \brief \b DLAEDA used by DSTEDC. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAEDA + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaeda.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaeda.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaeda.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
- * GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER CURLVL, CURPBM, INFO, N, TLVLS
- * ..
- * .. Array Arguments ..
- * INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
- * $ PRMPTR( * ), QPTR( * )
- * DOUBLE PRECISION GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAEDA computes the Z vector corresponding to the merge step in the
- *> CURLVLth step of the merge process with TLVLS steps for the CURPBMth
- *> problem.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the symmetric tridiagonal matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] TLVLS
- *> \verbatim
- *> TLVLS is INTEGER
- *> The total number of merging levels in the overall divide and
- *> conquer tree.
- *> \endverbatim
- *>
- *> \param[in] CURLVL
- *> \verbatim
- *> CURLVL is INTEGER
- *> The current level in the overall merge routine,
- *> 0 <= curlvl <= tlvls.
- *> \endverbatim
- *>
- *> \param[in] CURPBM
- *> \verbatim
- *> CURPBM is INTEGER
- *> The current problem in the current level in the overall
- *> merge routine (counting from upper left to lower right).
- *> \endverbatim
- *>
- *> \param[in] PRMPTR
- *> \verbatim
- *> PRMPTR is INTEGER array, dimension (N lg N)
- *> Contains a list of pointers which indicate where in PERM a
- *> level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
- *> indicates the size of the permutation and incidentally the
- *> size of the full, non-deflated problem.
- *> \endverbatim
- *>
- *> \param[in] PERM
- *> \verbatim
- *> PERM is INTEGER array, dimension (N lg N)
- *> Contains the permutations (from deflation and sorting) to be
- *> applied to each eigenblock.
- *> \endverbatim
- *>
- *> \param[in] GIVPTR
- *> \verbatim
- *> GIVPTR is INTEGER array, dimension (N lg N)
- *> Contains a list of pointers which indicate where in GIVCOL a
- *> level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
- *> indicates the number of Givens rotations.
- *> \endverbatim
- *>
- *> \param[in] GIVCOL
- *> \verbatim
- *> GIVCOL is INTEGER array, dimension (2, N lg N)
- *> Each pair of numbers indicates a pair of columns to take place
- *> in a Givens rotation.
- *> \endverbatim
- *>
- *> \param[in] GIVNUM
- *> \verbatim
- *> GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
- *> Each number indicates the S value to be used in the
- *> corresponding Givens rotation.
- *> \endverbatim
- *>
- *> \param[in] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (N**2)
- *> Contains the square eigenblocks from previous levels, the
- *> starting positions for blocks are given by QPTR.
- *> \endverbatim
- *>
- *> \param[in] QPTR
- *> \verbatim
- *> QPTR is INTEGER array, dimension (N+2)
- *> Contains a list of pointers which indicate where in Q an
- *> eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
- *> the size of the block.
- *> \endverbatim
- *>
- *> \param[out] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (N)
- *> On output this vector contains the updating vector (the last
- *> row of the first sub-eigenvector matrix and the first row of
- *> the second sub-eigenvector matrix).
- *> \endverbatim
- *>
- *> \param[out] ZTEMP
- *> \verbatim
- *> ZTEMP is DOUBLE PRECISION array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup auxOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> Jeff Rutter, Computer Science Division, University of California
- *> at Berkeley, USA
- *
- * =====================================================================
- SUBROUTINE DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
- $ GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER CURLVL, CURPBM, INFO, N, TLVLS
- * ..
- * .. Array Arguments ..
- INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
- $ PRMPTR( * ), QPTR( * )
- DOUBLE PRECISION GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ZERO, HALF, ONE
- PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0 )
- * ..
- * .. Local Scalars ..
- INTEGER BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2,
- $ PTR, ZPTR1
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DGEMV, DROT, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC DBLE, INT, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- *
- IF( N.LT.0 ) THEN
- INFO = -1
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLAEDA', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- * Determine location of first number in second half.
- *
- MID = N / 2 + 1
- *
- * Gather last/first rows of appropriate eigenblocks into center of Z
- *
- PTR = 1
- *
- * Determine location of lowest level subproblem in the full storage
- * scheme
- *
- CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
- *
- * Determine size of these matrices. We add HALF to the value of
- * the SQRT in case the machine underestimates one of these square
- * roots.
- *
- BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
- BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
- DO 10 K = 1, MID - BSIZ1 - 1
- Z( K ) = ZERO
- 10 CONTINUE
- CALL DCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1,
- $ Z( MID-BSIZ1 ), 1 )
- CALL DCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
- DO 20 K = MID + BSIZ2, N
- Z( K ) = ZERO
- 20 CONTINUE
- *
- * Loop through remaining levels 1 -> CURLVL applying the Givens
- * rotations and permutation and then multiplying the center matrices
- * against the current Z.
- *
- PTR = 2**TLVLS + 1
- DO 70 K = 1, CURLVL - 1
- CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
- PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
- PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
- ZPTR1 = MID - PSIZ1
- *
- * Apply Givens at CURR and CURR+1
- *
- DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
- CALL DROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1,
- $ Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ),
- $ GIVNUM( 2, I ) )
- 30 CONTINUE
- DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
- CALL DROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1,
- $ Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ),
- $ GIVNUM( 2, I ) )
- 40 CONTINUE
- PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
- PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
- DO 50 I = 0, PSIZ1 - 1
- ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
- 50 CONTINUE
- DO 60 I = 0, PSIZ2 - 1
- ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
- 60 CONTINUE
- *
- * Multiply Blocks at CURR and CURR+1
- *
- * Determine size of these matrices. We add HALF to the value of
- * the SQRT in case the machine underestimates one of these
- * square roots.
- *
- BSIZ1 = INT( HALF+SQRT( DBLE( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
- BSIZ2 = INT( HALF+SQRT( DBLE( QPTR( CURR+2 )-QPTR( CURR+
- $ 1 ) ) ) )
- IF( BSIZ1.GT.0 ) THEN
- CALL DGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ),
- $ BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
- END IF
- CALL DCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ),
- $ 1 )
- IF( BSIZ2.GT.0 ) THEN
- CALL DGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ),
- $ BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
- END IF
- CALL DCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1,
- $ Z( MID+BSIZ2 ), 1 )
- *
- PTR = PTR + 2**( TLVLS-K )
- 70 CONTINUE
- *
- RETURN
- *
- * End of DLAEDA
- *
- END
|