|
- *> \brief \b DLAED8 used by DSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLAED8 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed8.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed8.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed8.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
- * CUTPNT, Z, DLAMBDA, Q2, LDQ2, W, PERM, GIVPTR,
- * GIVCOL, GIVNUM, INDXP, INDX, INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
- * $ QSIZ
- * DOUBLE PRECISION RHO
- * ..
- * .. Array Arguments ..
- * INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
- * $ INDXQ( * ), PERM( * )
- * DOUBLE PRECISION D( * ), DLAMBDA( * ), GIVNUM( 2, * ),
- * $ Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLAED8 merges the two sets of eigenvalues together into a single
- *> sorted set. Then it tries to deflate the size of the problem.
- *> There are two ways in which deflation can occur: when two or more
- *> eigenvalues are close together or if there is a tiny element in the
- *> Z vector. For each such occurrence the order of the related secular
- *> equation problem is reduced by one.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] ICOMPQ
- *> \verbatim
- *> ICOMPQ is INTEGER
- *> = 0: Compute eigenvalues only.
- *> = 1: Compute eigenvectors of original dense symmetric matrix
- *> also. On entry, Q contains the orthogonal matrix used
- *> to reduce the original matrix to tridiagonal form.
- *> \endverbatim
- *>
- *> \param[out] K
- *> \verbatim
- *> K is INTEGER
- *> The number of non-deflated eigenvalues, and the order of the
- *> related secular equation.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The dimension of the symmetric tridiagonal matrix. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] QSIZ
- *> \verbatim
- *> QSIZ is INTEGER
- *> The dimension of the orthogonal matrix used to reduce
- *> the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1.
- *> \endverbatim
- *>
- *> \param[in,out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (N)
- *> On entry, the eigenvalues of the two submatrices to be
- *> combined. On exit, the trailing (N-K) updated eigenvalues
- *> (those which were deflated) sorted into increasing order.
- *> \endverbatim
- *>
- *> \param[in,out] Q
- *> \verbatim
- *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
- *> If ICOMPQ = 0, Q is not referenced. Otherwise,
- *> on entry, Q contains the eigenvectors of the partially solved
- *> system which has been previously updated in matrix
- *> multiplies with other partially solved eigensystems.
- *> On exit, Q contains the trailing (N-K) updated eigenvectors
- *> (those which were deflated) in its last N-K columns.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] INDXQ
- *> \verbatim
- *> INDXQ is INTEGER array, dimension (N)
- *> The permutation which separately sorts the two sub-problems
- *> in D into ascending order. Note that elements in the second
- *> half of this permutation must first have CUTPNT added to
- *> their values in order to be accurate.
- *> \endverbatim
- *>
- *> \param[in,out] RHO
- *> \verbatim
- *> RHO is DOUBLE PRECISION
- *> On entry, the off-diagonal element associated with the rank-1
- *> cut which originally split the two submatrices which are now
- *> being recombined.
- *> On exit, RHO has been modified to the value required by
- *> DLAED3.
- *> \endverbatim
- *>
- *> \param[in] CUTPNT
- *> \verbatim
- *> CUTPNT is INTEGER
- *> The location of the last eigenvalue in the leading
- *> sub-matrix. min(1,N) <= CUTPNT <= N.
- *> \endverbatim
- *>
- *> \param[in] Z
- *> \verbatim
- *> Z is DOUBLE PRECISION array, dimension (N)
- *> On entry, Z contains the updating vector (the last row of
- *> the first sub-eigenvector matrix and the first row of the
- *> second sub-eigenvector matrix).
- *> On exit, the contents of Z are destroyed by the updating
- *> process.
- *> \endverbatim
- *>
- *> \param[out] DLAMBDA
- *> \verbatim
- *> DLAMBDA is DOUBLE PRECISION array, dimension (N)
- *> A copy of the first K eigenvalues which will be used by
- *> DLAED3 to form the secular equation.
- *> \endverbatim
- *>
- *> \param[out] Q2
- *> \verbatim
- *> Q2 is DOUBLE PRECISION array, dimension (LDQ2,N)
- *> If ICOMPQ = 0, Q2 is not referenced. Otherwise,
- *> a copy of the first K eigenvectors which will be used by
- *> DLAED7 in a matrix multiply (DGEMM) to update the new
- *> eigenvectors.
- *> \endverbatim
- *>
- *> \param[in] LDQ2
- *> \verbatim
- *> LDQ2 is INTEGER
- *> The leading dimension of the array Q2. LDQ2 >= max(1,N).
- *> \endverbatim
- *>
- *> \param[out] W
- *> \verbatim
- *> W is DOUBLE PRECISION array, dimension (N)
- *> The first k values of the final deflation-altered z-vector and
- *> will be passed to DLAED3.
- *> \endverbatim
- *>
- *> \param[out] PERM
- *> \verbatim
- *> PERM is INTEGER array, dimension (N)
- *> The permutations (from deflation and sorting) to be applied
- *> to each eigenblock.
- *> \endverbatim
- *>
- *> \param[out] GIVPTR
- *> \verbatim
- *> GIVPTR is INTEGER
- *> The number of Givens rotations which took place in this
- *> subproblem.
- *> \endverbatim
- *>
- *> \param[out] GIVCOL
- *> \verbatim
- *> GIVCOL is INTEGER array, dimension (2, N)
- *> Each pair of numbers indicates a pair of columns to take place
- *> in a Givens rotation.
- *> \endverbatim
- *>
- *> \param[out] GIVNUM
- *> \verbatim
- *> GIVNUM is DOUBLE PRECISION array, dimension (2, N)
- *> Each number indicates the S value to be used in the
- *> corresponding Givens rotation.
- *> \endverbatim
- *>
- *> \param[out] INDXP
- *> \verbatim
- *> INDXP is INTEGER array, dimension (N)
- *> The permutation used to place deflated values of D at the end
- *> of the array. INDXP(1:K) points to the nondeflated D-values
- *> and INDXP(K+1:N) points to the deflated eigenvalues.
- *> \endverbatim
- *>
- *> \param[out] INDX
- *> \verbatim
- *> INDX is INTEGER array, dimension (N)
- *> The permutation used to sort the contents of D into ascending
- *> order.
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit.
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup auxOTHERcomputational
- *
- *> \par Contributors:
- * ==================
- *>
- *> Jeff Rutter, Computer Science Division, University of California
- *> at Berkeley, USA
- *
- * =====================================================================
- SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO,
- $ CUTPNT, Z, DLAMBDA, Q2, LDQ2, W, PERM, GIVPTR,
- $ GIVCOL, GIVNUM, INDXP, INDX, INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N,
- $ QSIZ
- DOUBLE PRECISION RHO
- * ..
- * .. Array Arguments ..
- INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
- $ INDXQ( * ), PERM( * )
- DOUBLE PRECISION D( * ), DLAMBDA( * ), GIVNUM( 2, * ),
- $ Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION MONE, ZERO, ONE, TWO, EIGHT
- PARAMETER ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
- $ TWO = 2.0D0, EIGHT = 8.0D0 )
- * ..
- * .. Local Scalars ..
- *
- INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
- DOUBLE PRECISION C, EPS, S, T, TAU, TOL
- * ..
- * .. External Functions ..
- INTEGER IDAMAX
- DOUBLE PRECISION DLAMCH, DLAPY2
- EXTERNAL IDAMAX, DLAMCH, DLAPY2
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN, SQRT
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- *
- IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -3
- ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
- INFO = -4
- ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
- INFO = -7
- ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
- INFO = -10
- ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
- INFO = -14
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLAED8', -INFO )
- RETURN
- END IF
- *
- * Need to initialize GIVPTR to O here in case of quick exit
- * to prevent an unspecified code behavior (usually sigfault)
- * when IWORK array on entry to *stedc is not zeroed
- * (or at least some IWORK entries which used in *laed7 for GIVPTR).
- *
- GIVPTR = 0
- *
- * Quick return if possible
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- N1 = CUTPNT
- N2 = N - N1
- N1P1 = N1 + 1
- *
- IF( RHO.LT.ZERO ) THEN
- CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
- END IF
- *
- * Normalize z so that norm(z) = 1
- *
- T = ONE / SQRT( TWO )
- DO 10 J = 1, N
- INDX( J ) = J
- 10 CONTINUE
- CALL DSCAL( N, T, Z, 1 )
- RHO = ABS( TWO*RHO )
- *
- * Sort the eigenvalues into increasing order
- *
- DO 20 I = CUTPNT + 1, N
- INDXQ( I ) = INDXQ( I ) + CUTPNT
- 20 CONTINUE
- DO 30 I = 1, N
- DLAMBDA( I ) = D( INDXQ( I ) )
- W( I ) = Z( INDXQ( I ) )
- 30 CONTINUE
- I = 1
- J = CUTPNT + 1
- CALL DLAMRG( N1, N2, DLAMBDA, 1, 1, INDX )
- DO 40 I = 1, N
- D( I ) = DLAMBDA( INDX( I ) )
- Z( I ) = W( INDX( I ) )
- 40 CONTINUE
- *
- * Calculate the allowable deflation tolerance
- *
- IMAX = IDAMAX( N, Z, 1 )
- JMAX = IDAMAX( N, D, 1 )
- EPS = DLAMCH( 'Epsilon' )
- TOL = EIGHT*EPS*ABS( D( JMAX ) )
- *
- * If the rank-1 modifier is small enough, no more needs to be done
- * except to reorganize Q so that its columns correspond with the
- * elements in D.
- *
- IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
- K = 0
- IF( ICOMPQ.EQ.0 ) THEN
- DO 50 J = 1, N
- PERM( J ) = INDXQ( INDX( J ) )
- 50 CONTINUE
- ELSE
- DO 60 J = 1, N
- PERM( J ) = INDXQ( INDX( J ) )
- CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
- 60 CONTINUE
- CALL DLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ),
- $ LDQ )
- END IF
- RETURN
- END IF
- *
- * If there are multiple eigenvalues then the problem deflates. Here
- * the number of equal eigenvalues are found. As each equal
- * eigenvalue is found, an elementary reflector is computed to rotate
- * the corresponding eigensubspace so that the corresponding
- * components of Z are zero in this new basis.
- *
- K = 0
- K2 = N + 1
- DO 70 J = 1, N
- IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
- *
- * Deflate due to small z component.
- *
- K2 = K2 - 1
- INDXP( K2 ) = J
- IF( J.EQ.N )
- $ GO TO 110
- ELSE
- JLAM = J
- GO TO 80
- END IF
- 70 CONTINUE
- 80 CONTINUE
- J = J + 1
- IF( J.GT.N )
- $ GO TO 100
- IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
- *
- * Deflate due to small z component.
- *
- K2 = K2 - 1
- INDXP( K2 ) = J
- ELSE
- *
- * Check if eigenvalues are close enough to allow deflation.
- *
- S = Z( JLAM )
- C = Z( J )
- *
- * Find sqrt(a**2+b**2) without overflow or
- * destructive underflow.
- *
- TAU = DLAPY2( C, S )
- T = D( J ) - D( JLAM )
- C = C / TAU
- S = -S / TAU
- IF( ABS( T*C*S ).LE.TOL ) THEN
- *
- * Deflation is possible.
- *
- Z( J ) = TAU
- Z( JLAM ) = ZERO
- *
- * Record the appropriate Givens rotation
- *
- GIVPTR = GIVPTR + 1
- GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
- GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
- GIVNUM( 1, GIVPTR ) = C
- GIVNUM( 2, GIVPTR ) = S
- IF( ICOMPQ.EQ.1 ) THEN
- CALL DROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
- $ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
- END IF
- T = D( JLAM )*C*C + D( J )*S*S
- D( J ) = D( JLAM )*S*S + D( J )*C*C
- D( JLAM ) = T
- K2 = K2 - 1
- I = 1
- 90 CONTINUE
- IF( K2+I.LE.N ) THEN
- IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
- INDXP( K2+I-1 ) = INDXP( K2+I )
- INDXP( K2+I ) = JLAM
- I = I + 1
- GO TO 90
- ELSE
- INDXP( K2+I-1 ) = JLAM
- END IF
- ELSE
- INDXP( K2+I-1 ) = JLAM
- END IF
- JLAM = J
- ELSE
- K = K + 1
- W( K ) = Z( JLAM )
- DLAMBDA( K ) = D( JLAM )
- INDXP( K ) = JLAM
- JLAM = J
- END IF
- END IF
- GO TO 80
- 100 CONTINUE
- *
- * Record the last eigenvalue.
- *
- K = K + 1
- W( K ) = Z( JLAM )
- DLAMBDA( K ) = D( JLAM )
- INDXP( K ) = JLAM
- *
- 110 CONTINUE
- *
- * Sort the eigenvalues and corresponding eigenvectors into DLAMBDA
- * and Q2 respectively. The eigenvalues/vectors which were not
- * deflated go into the first K slots of DLAMBDA and Q2 respectively,
- * while those which were deflated go into the last N - K slots.
- *
- IF( ICOMPQ.EQ.0 ) THEN
- DO 120 J = 1, N
- JP = INDXP( J )
- DLAMBDA( J ) = D( JP )
- PERM( J ) = INDXQ( INDX( JP ) )
- 120 CONTINUE
- ELSE
- DO 130 J = 1, N
- JP = INDXP( J )
- DLAMBDA( J ) = D( JP )
- PERM( J ) = INDXQ( INDX( JP ) )
- CALL DCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
- 130 CONTINUE
- END IF
- *
- * The deflated eigenvalues and their corresponding vectors go back
- * into the last N - K slots of D and Q respectively.
- *
- IF( K.LT.N ) THEN
- IF( ICOMPQ.EQ.0 ) THEN
- CALL DCOPY( N-K, DLAMBDA( K+1 ), 1, D( K+1 ), 1 )
- ELSE
- CALL DCOPY( N-K, DLAMBDA( K+1 ), 1, D( K+1 ), 1 )
- CALL DLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2,
- $ Q( 1, K+1 ), LDQ )
- END IF
- END IF
- *
- RETURN
- *
- * End of DLAED8
- *
- END
|