|
- *> \brief \b DLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLACN2 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlacn2.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlacn2.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlacn2.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
- *
- * .. Scalar Arguments ..
- * INTEGER KASE, N
- * DOUBLE PRECISION EST
- * ..
- * .. Array Arguments ..
- * INTEGER ISGN( * ), ISAVE( 3 )
- * DOUBLE PRECISION V( * ), X( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLACN2 estimates the 1-norm of a square, real matrix A.
- *> Reverse communication is used for evaluating matrix-vector products.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The order of the matrix. N >= 1.
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is DOUBLE PRECISION array, dimension (N)
- *> On the final return, V = A*W, where EST = norm(V)/norm(W)
- *> (W is not returned).
- *> \endverbatim
- *>
- *> \param[in,out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (N)
- *> On an intermediate return, X should be overwritten by
- *> A * X, if KASE=1,
- *> A**T * X, if KASE=2,
- *> and DLACN2 must be re-called with all the other parameters
- *> unchanged.
- *> \endverbatim
- *>
- *> \param[out] ISGN
- *> \verbatim
- *> ISGN is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[in,out] EST
- *> \verbatim
- *> EST is DOUBLE PRECISION
- *> On entry with KASE = 1 or 2 and ISAVE(1) = 3, EST should be
- *> unchanged from the previous call to DLACN2.
- *> On exit, EST is an estimate (a lower bound) for norm(A).
- *> \endverbatim
- *>
- *> \param[in,out] KASE
- *> \verbatim
- *> KASE is INTEGER
- *> On the initial call to DLACN2, KASE should be 0.
- *> On an intermediate return, KASE will be 1 or 2, indicating
- *> whether X should be overwritten by A * X or A**T * X.
- *> On the final return from DLACN2, KASE will again be 0.
- *> \endverbatim
- *>
- *> \param[in,out] ISAVE
- *> \verbatim
- *> ISAVE is INTEGER array, dimension (3)
- *> ISAVE is used to save variables between calls to DLACN2
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERauxiliary
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> Originally named SONEST, dated March 16, 1988.
- *>
- *> This is a thread safe version of DLACON, which uses the array ISAVE
- *> in place of a SAVE statement, as follows:
- *>
- *> DLACON DLACN2
- *> JUMP ISAVE(1)
- *> J ISAVE(2)
- *> ITER ISAVE(3)
- *> \endverbatim
- *
- *> \par Contributors:
- * ==================
- *>
- *> Nick Higham, University of Manchester
- *
- *> \par References:
- * ================
- *>
- *> N.J. Higham, "FORTRAN codes for estimating the one-norm of
- *> a real or complex matrix, with applications to condition estimation",
- *> ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
- *>
- * =====================================================================
- SUBROUTINE DLACN2( N, V, X, ISGN, EST, KASE, ISAVE )
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER KASE, N
- DOUBLE PRECISION EST
- * ..
- * .. Array Arguments ..
- INTEGER ISGN( * ), ISAVE( 3 )
- DOUBLE PRECISION V( * ), X( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- INTEGER ITMAX
- PARAMETER ( ITMAX = 5 )
- DOUBLE PRECISION ZERO, ONE, TWO
- PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, JLAST
- DOUBLE PRECISION ALTSGN, ESTOLD, TEMP, XS
- * ..
- * .. External Functions ..
- INTEGER IDAMAX
- DOUBLE PRECISION DASUM
- EXTERNAL IDAMAX, DASUM
- * ..
- * .. External Subroutines ..
- EXTERNAL DCOPY
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, DBLE, NINT
- * ..
- * .. Executable Statements ..
- *
- IF( KASE.EQ.0 ) THEN
- DO 10 I = 1, N
- X( I ) = ONE / DBLE( N )
- 10 CONTINUE
- KASE = 1
- ISAVE( 1 ) = 1
- RETURN
- END IF
- *
- GO TO ( 20, 40, 70, 110, 140 )ISAVE( 1 )
- *
- * ................ ENTRY (ISAVE( 1 ) = 1)
- * FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X.
- *
- 20 CONTINUE
- IF( N.EQ.1 ) THEN
- V( 1 ) = X( 1 )
- EST = ABS( V( 1 ) )
- * ... QUIT
- GO TO 150
- END IF
- EST = DASUM( N, X, 1 )
- *
- DO 30 I = 1, N
- IF( X(I).GE.ZERO ) THEN
- X(I) = ONE
- ELSE
- X(I) = -ONE
- END IF
- ISGN( I ) = NINT( X( I ) )
- 30 CONTINUE
- KASE = 2
- ISAVE( 1 ) = 2
- RETURN
- *
- * ................ ENTRY (ISAVE( 1 ) = 2)
- * FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
- *
- 40 CONTINUE
- ISAVE( 2 ) = IDAMAX( N, X, 1 )
- ISAVE( 3 ) = 2
- *
- * MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
- *
- 50 CONTINUE
- DO 60 I = 1, N
- X( I ) = ZERO
- 60 CONTINUE
- X( ISAVE( 2 ) ) = ONE
- KASE = 1
- ISAVE( 1 ) = 3
- RETURN
- *
- * ................ ENTRY (ISAVE( 1 ) = 3)
- * X HAS BEEN OVERWRITTEN BY A*X.
- *
- 70 CONTINUE
- CALL DCOPY( N, X, 1, V, 1 )
- ESTOLD = EST
- EST = DASUM( N, V, 1 )
- DO 80 I = 1, N
- IF( X(I).GE.ZERO ) THEN
- XS = ONE
- ELSE
- XS = -ONE
- END IF
- IF( NINT( XS ).NE.ISGN( I ) )
- $ GO TO 90
- 80 CONTINUE
- * REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
- GO TO 120
- *
- 90 CONTINUE
- * TEST FOR CYCLING.
- IF( EST.LE.ESTOLD )
- $ GO TO 120
- *
- DO 100 I = 1, N
- IF( X(I).GE.ZERO ) THEN
- X(I) = ONE
- ELSE
- X(I) = -ONE
- END IF
- ISGN( I ) = NINT( X( I ) )
- 100 CONTINUE
- KASE = 2
- ISAVE( 1 ) = 4
- RETURN
- *
- * ................ ENTRY (ISAVE( 1 ) = 4)
- * X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.
- *
- 110 CONTINUE
- JLAST = ISAVE( 2 )
- ISAVE( 2 ) = IDAMAX( N, X, 1 )
- IF( ( X( JLAST ).NE.ABS( X( ISAVE( 2 ) ) ) ) .AND.
- $ ( ISAVE( 3 ).LT.ITMAX ) ) THEN
- ISAVE( 3 ) = ISAVE( 3 ) + 1
- GO TO 50
- END IF
- *
- * ITERATION COMPLETE. FINAL STAGE.
- *
- 120 CONTINUE
- ALTSGN = ONE
- DO 130 I = 1, N
- X( I ) = ALTSGN*( ONE+DBLE( I-1 ) / DBLE( N-1 ) )
- ALTSGN = -ALTSGN
- 130 CONTINUE
- KASE = 1
- ISAVE( 1 ) = 5
- RETURN
- *
- * ................ ENTRY (ISAVE( 1 ) = 5)
- * X HAS BEEN OVERWRITTEN BY A*X.
- *
- 140 CONTINUE
- TEMP = TWO*( DASUM( N, X, 1 ) / DBLE( 3*N ) )
- IF( TEMP.GT.EST ) THEN
- CALL DCOPY( N, X, 1, V, 1 )
- EST = TEMP
- END IF
- *
- 150 CONTINUE
- KASE = 0
- RETURN
- *
- * End of DLACN2
- *
- END
|