|
- *> \brief \b DLA_PORCOND estimates the Skeel condition number for a symmetric positive-definite matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download DLA_PORCOND + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_porcond.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_porcond.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_porcond.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
- * CMODE, C, INFO, WORK,
- * IWORK )
- *
- * .. Scalar Arguments ..
- * CHARACTER UPLO
- * INTEGER N, LDA, LDAF, INFO, CMODE
- * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ),
- * $ C( * )
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DLA_PORCOND Estimates the Skeel condition number of op(A) * op2(C)
- *> where op2 is determined by CMODE as follows
- *> CMODE = 1 op2(C) = C
- *> CMODE = 0 op2(C) = I
- *> CMODE = -1 op2(C) = inv(C)
- *> The Skeel condition number cond(A) = norminf( |inv(A)||A| )
- *> is computed by computing scaling factors R such that
- *> diag(R)*A*op2(C) is row equilibrated and computing the standard
- *> infinity-norm condition number.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] UPLO
- *> \verbatim
- *> UPLO is CHARACTER*1
- *> = 'U': Upper triangle of A is stored;
- *> = 'L': Lower triangle of A is stored.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of linear equations, i.e., the order of the
- *> matrix A. N >= 0.
- *> \endverbatim
- *>
- *> \param[in] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (LDA,N)
- *> On entry, the N-by-N matrix A.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] AF
- *> \verbatim
- *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
- *> The triangular factor U or L from the Cholesky factorization
- *> A = U**T*U or A = L*L**T, as computed by DPOTRF.
- *> \endverbatim
- *>
- *> \param[in] LDAF
- *> \verbatim
- *> LDAF is INTEGER
- *> The leading dimension of the array AF. LDAF >= max(1,N).
- *> \endverbatim
- *>
- *> \param[in] CMODE
- *> \verbatim
- *> CMODE is INTEGER
- *> Determines op2(C) in the formula op(A) * op2(C) as follows:
- *> CMODE = 1 op2(C) = C
- *> CMODE = 0 op2(C) = I
- *> CMODE = -1 op2(C) = inv(C)
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is DOUBLE PRECISION array, dimension (N)
- *> The vector C in the formula op(A) * op2(C).
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: Successful exit.
- *> i > 0: The ith argument is invalid.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension (3*N).
- *> Workspace.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N).
- *> Workspace.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doublePOcomputational
- *
- * =====================================================================
- DOUBLE PRECISION FUNCTION DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
- $ CMODE, C, INFO, WORK,
- $ IWORK )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- CHARACTER UPLO
- INTEGER N, LDA, LDAF, INFO, CMODE
- DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ),
- $ C( * )
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Local Scalars ..
- INTEGER KASE, I, J
- DOUBLE PRECISION AINVNM, TMP
- LOGICAL UP
- * ..
- * .. Array Arguments ..
- INTEGER ISAVE( 3 )
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL DLACN2, DPOTRS, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Executable Statements ..
- *
- DLA_PORCOND = 0.0D+0
- *
- INFO = 0
- IF( N.LT.0 ) THEN
- INFO = -2
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'DLA_PORCOND', -INFO )
- RETURN
- END IF
-
- IF( N.EQ.0 ) THEN
- DLA_PORCOND = 1.0D+0
- RETURN
- END IF
- UP = .FALSE.
- IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
- *
- * Compute the equilibration matrix R such that
- * inv(R)*A*C has unit 1-norm.
- *
- IF ( UP ) THEN
- DO I = 1, N
- TMP = 0.0D+0
- IF ( CMODE .EQ. 1 ) THEN
- DO J = 1, I
- TMP = TMP + ABS( A( J, I ) * C( J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( I, J ) * C( J ) )
- END DO
- ELSE IF ( CMODE .EQ. 0 ) THEN
- DO J = 1, I
- TMP = TMP + ABS( A( J, I ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( I, J ) )
- END DO
- ELSE
- DO J = 1, I
- TMP = TMP + ABS( A( J ,I ) / C( J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( I, J ) / C( J ) )
- END DO
- END IF
- WORK( 2*N+I ) = TMP
- END DO
- ELSE
- DO I = 1, N
- TMP = 0.0D+0
- IF ( CMODE .EQ. 1 ) THEN
- DO J = 1, I
- TMP = TMP + ABS( A( I, J ) * C( J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( J, I ) * C( J ) )
- END DO
- ELSE IF ( CMODE .EQ. 0 ) THEN
- DO J = 1, I
- TMP = TMP + ABS( A( I, J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( J, I ) )
- END DO
- ELSE
- DO J = 1, I
- TMP = TMP + ABS( A( I, J ) / C( J ) )
- END DO
- DO J = I+1, N
- TMP = TMP + ABS( A( J, I ) / C( J ) )
- END DO
- END IF
- WORK( 2*N+I ) = TMP
- END DO
- ENDIF
- *
- * Estimate the norm of inv(op(A)).
- *
- AINVNM = 0.0D+0
-
- KASE = 0
- 10 CONTINUE
- CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
- IF( KASE.NE.0 ) THEN
- IF( KASE.EQ.2 ) THEN
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * WORK( 2*N+I )
- END DO
-
- IF (UP) THEN
- CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
- ELSE
- CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
- ENDIF
- *
- * Multiply by inv(C).
- *
- IF ( CMODE .EQ. 1 ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) / C( I )
- END DO
- ELSE IF ( CMODE .EQ. -1 ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) * C( I )
- END DO
- END IF
- ELSE
- *
- * Multiply by inv(C**T).
- *
- IF ( CMODE .EQ. 1 ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) / C( I )
- END DO
- ELSE IF ( CMODE .EQ. -1 ) THEN
- DO I = 1, N
- WORK( I ) = WORK( I ) * C( I )
- END DO
- END IF
-
- IF ( UP ) THEN
- CALL DPOTRS( 'Upper', N, 1, AF, LDAF, WORK, N, INFO )
- ELSE
- CALL DPOTRS( 'Lower', N, 1, AF, LDAF, WORK, N, INFO )
- ENDIF
- *
- * Multiply by R.
- *
- DO I = 1, N
- WORK( I ) = WORK( I ) * WORK( 2*N+I )
- END DO
- END IF
- GO TO 10
- END IF
- *
- * Compute the estimate of the reciprocal condition number.
- *
- IF( AINVNM .NE. 0.0D+0 )
- $ DLA_PORCOND = ( 1.0D+0 / AINVNM )
- *
- RETURN
- *
- * End of DLA_PORCOND
- *
- END
|