|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublereal c_b12 = 0.;
- static doublereal c_b13 = 1.;
- static integer c__1 = 1;
- static integer c__3 = 3;
-
- /* > \brief \b DHGEQZ */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DHGEQZ + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhgeqz.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhgeqz.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhgeqz.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, */
- /* ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, */
- /* LWORK, INFO ) */
-
- /* CHARACTER COMPQ, COMPZ, JOB */
- /* INTEGER IHI, ILO, INFO, LDH, LDQ, LDT, LDZ, LWORK, N */
- /* DOUBLE PRECISION ALPHAI( * ), ALPHAR( * ), BETA( * ), */
- /* $ H( LDH, * ), Q( LDQ, * ), T( LDT, * ), */
- /* $ WORK( * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DHGEQZ computes the eigenvalues of a real matrix pair (H,T), */
- /* > where H is an upper Hessenberg matrix and T is upper triangular, */
- /* > using the double-shift QZ method. */
- /* > Matrix pairs of this type are produced by the reduction to */
- /* > generalized upper Hessenberg form of a real matrix pair (A,B): */
- /* > */
- /* > A = Q1*H*Z1**T, B = Q1*T*Z1**T, */
- /* > */
- /* > as computed by DGGHRD. */
- /* > */
- /* > If JOB='S', then the Hessenberg-triangular pair (H,T) is */
- /* > also reduced to generalized Schur form, */
- /* > */
- /* > H = Q*S*Z**T, T = Q*P*Z**T, */
- /* > */
- /* > where Q and Z are orthogonal matrices, P is an upper triangular */
- /* > matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2 */
- /* > diagonal blocks. */
- /* > */
- /* > The 1-by-1 blocks correspond to real eigenvalues of the matrix pair */
- /* > (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of */
- /* > eigenvalues. */
- /* > */
- /* > Additionally, the 2-by-2 upper triangular diagonal blocks of P */
- /* > corresponding to 2-by-2 blocks of S are reduced to positive diagonal */
- /* > form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0, */
- /* > P(j,j) > 0, and P(j+1,j+1) > 0. */
- /* > */
- /* > Optionally, the orthogonal matrix Q from the generalized Schur */
- /* > factorization may be postmultiplied into an input matrix Q1, and the */
- /* > orthogonal matrix Z may be postmultiplied into an input matrix Z1. */
- /* > If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced */
- /* > the matrix pair (A,B) to generalized upper Hessenberg form, then the */
- /* > output matrices Q1*Q and Z1*Z are the orthogonal factors from the */
- /* > generalized Schur factorization of (A,B): */
- /* > */
- /* > A = (Q1*Q)*S*(Z1*Z)**T, B = (Q1*Q)*P*(Z1*Z)**T. */
- /* > */
- /* > To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, */
- /* > of (A,B)) are computed as a pair of values (alpha,beta), where alpha is */
- /* > complex and beta real. */
- /* > If beta is nonzero, lambda = alpha / beta is an eigenvalue of the */
- /* > generalized nonsymmetric eigenvalue problem (GNEP) */
- /* > A*x = lambda*B*x */
- /* > and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the */
- /* > alternate form of the GNEP */
- /* > mu*A*y = B*y. */
- /* > Real eigenvalues can be read directly from the generalized Schur */
- /* > form: */
- /* > alpha = S(i,i), beta = P(i,i). */
- /* > */
- /* > Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix */
- /* > Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), */
- /* > pp. 241--256. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOB */
- /* > \verbatim */
- /* > JOB is CHARACTER*1 */
- /* > = 'E': Compute eigenvalues only; */
- /* > = 'S': Compute eigenvalues and the Schur form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COMPQ */
- /* > \verbatim */
- /* > COMPQ is CHARACTER*1 */
- /* > = 'N': Left Schur vectors (Q) are not computed; */
- /* > = 'I': Q is initialized to the unit matrix and the matrix Q */
- /* > of left Schur vectors of (H,T) is returned; */
- /* > = 'V': Q must contain an orthogonal matrix Q1 on entry and */
- /* > the product Q1*Q is returned. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] COMPZ */
- /* > \verbatim */
- /* > COMPZ is CHARACTER*1 */
- /* > = 'N': Right Schur vectors (Z) are not computed; */
- /* > = 'I': Z is initialized to the unit matrix and the matrix Z */
- /* > of right Schur vectors of (H,T) is returned; */
- /* > = 'V': Z must contain an orthogonal matrix Z1 on entry and */
- /* > the product Z1*Z is returned. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrices H, T, Q, and Z. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILO */
- /* > \verbatim */
- /* > ILO is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHI */
- /* > \verbatim */
- /* > IHI is INTEGER */
- /* > ILO and IHI mark the rows and columns of H which are in */
- /* > Hessenberg form. It is assumed that A is already upper */
- /* > triangular in rows and columns 1:ILO-1 and IHI+1:N. */
- /* > If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is DOUBLE PRECISION array, dimension (LDH, N) */
- /* > On entry, the N-by-N upper Hessenberg matrix H. */
- /* > On exit, if JOB = 'S', H contains the upper quasi-triangular */
- /* > matrix S from the generalized Schur factorization. */
- /* > If JOB = 'E', the diagonal blocks of H match those of S, but */
- /* > the rest of H is unspecified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > The leading dimension of the array H. LDH >= f2cmax( 1, N ). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] T */
- /* > \verbatim */
- /* > T is DOUBLE PRECISION array, dimension (LDT, N) */
- /* > On entry, the N-by-N upper triangular matrix T. */
- /* > On exit, if JOB = 'S', T contains the upper triangular */
- /* > matrix P from the generalized Schur factorization; */
- /* > 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S */
- /* > are reduced to positive diagonal form, i.e., if H(j+1,j) is */
- /* > non-zero, then T(j+1,j) = T(j,j+1) = 0, T(j,j) > 0, and */
- /* > T(j+1,j+1) > 0. */
- /* > If JOB = 'E', the diagonal blocks of T match those of P, but */
- /* > the rest of T is unspecified. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. LDT >= f2cmax( 1, N ). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHAR */
- /* > \verbatim */
- /* > ALPHAR is DOUBLE PRECISION array, dimension (N) */
- /* > The real parts of each scalar alpha defining an eigenvalue */
- /* > of GNEP. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] ALPHAI */
- /* > \verbatim */
- /* > ALPHAI is DOUBLE PRECISION array, dimension (N) */
- /* > The imaginary parts of each scalar alpha defining an */
- /* > eigenvalue of GNEP. */
- /* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
- /* > positive, then the j-th and (j+1)-st eigenvalues are a */
- /* > complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BETA */
- /* > \verbatim */
- /* > BETA is DOUBLE PRECISION array, dimension (N) */
- /* > The scalars beta that define the eigenvalues of GNEP. */
- /* > Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
- /* > beta = BETA(j) represent the j-th eigenvalue of the matrix */
- /* > pair (A,B), in one of the forms lambda = alpha/beta or */
- /* > mu = beta/alpha. Since either lambda or mu may overflow, */
- /* > they should not, in general, be computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Q */
- /* > \verbatim */
- /* > Q is DOUBLE PRECISION array, dimension (LDQ, N) */
- /* > On entry, if COMPQ = 'V', the orthogonal matrix Q1 used in */
- /* > the reduction of (A,B) to generalized Hessenberg form. */
- /* > On exit, if COMPQ = 'I', the orthogonal matrix of left Schur */
- /* > vectors of (H,T), and if COMPQ = 'V', the orthogonal matrix */
- /* > of left Schur vectors of (A,B). */
- /* > Not referenced if COMPQ = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDQ */
- /* > \verbatim */
- /* > LDQ is INTEGER */
- /* > The leading dimension of the array Q. LDQ >= 1. */
- /* > If COMPQ='V' or 'I', then LDQ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension (LDZ, N) */
- /* > On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in */
- /* > the reduction of (A,B) to generalized Hessenberg form. */
- /* > On exit, if COMPZ = 'I', the orthogonal matrix of */
- /* > right Schur vectors of (H,T), and if COMPZ = 'V', the */
- /* > orthogonal matrix of right Schur vectors of (A,B). */
- /* > Not referenced if COMPZ = 'N'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > The leading dimension of the array Z. LDZ >= 1. */
- /* > If COMPZ='V' or 'I', then LDZ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. LWORK >= f2cmax(1,N). */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > = 1,...,N: the QZ iteration did not converge. (H,T) is not */
- /* > in Schur form, but ALPHAR(i), ALPHAI(i), and */
- /* > BETA(i), i=INFO+1,...,N should be correct. */
- /* > = N+1,...,2*N: the shift calculation failed. (H,T) is not */
- /* > in Schur form, but ALPHAR(i), ALPHAI(i), and */
- /* > BETA(i), i=INFO-N+1,...,N should be correct. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup doubleGEcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > Iteration counters: */
- /* > */
- /* > JITER -- counts iterations. */
- /* > IITER -- counts iterations run since ILAST was last */
- /* > changed. This is therefore reset only when a 1-by-1 or */
- /* > 2-by-2 block deflates off the bottom. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dhgeqz_(char *job, char *compq, char *compz, integer *n,
- integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
- *t, integer *ldt, doublereal *alphar, doublereal *alphai, doublereal *
- beta, doublereal *q, integer *ldq, doublereal *z__, integer *ldz,
- doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1,
- z_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2, d__3, d__4;
-
- /* Local variables */
- doublereal ad11l, ad12l, ad21l, ad22l, ad32l, wabs, atol, btol, temp;
- extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *), dlag2_(
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *);
- doublereal temp2, s1inv, c__;
- integer j;
- doublereal s, v[3], scale;
- extern logical lsame_(char *, char *);
- integer iiter, ilast, jiter;
- doublereal anorm, bnorm;
- integer maxit;
- doublereal tempi, tempr, s1, s2, t1, u1, u2;
- extern doublereal dlapy2_(doublereal *, doublereal *), dlapy3_(doublereal
- *, doublereal *, doublereal *);
- extern /* Subroutine */ void dlasv2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- logical ilazr2;
- doublereal a11, a12, a21, a22, b11, b22, c12, c21;
- integer jc;
- doublereal an, bn, cl, cq, cr;
- integer in;
- doublereal ascale, bscale, u12, w11;
- integer jr;
- doublereal cz, sl, w12, w21, w22, wi;
- extern doublereal dlamch_(char *);
- doublereal sr;
- extern /* Subroutine */ void dlarfg_(integer *, doublereal *, doublereal *,
- integer *, doublereal *);
- doublereal vs, wr;
- extern doublereal dlanhs_(char *, integer *, doublereal *, integer *,
- doublereal *);
- extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ void dlartg_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *);
- doublereal safmax;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- doublereal eshift;
- logical ilschr;
- doublereal b1a, b2a;
- integer icompq, ilastm;
- doublereal a1i;
- integer ischur;
- doublereal a2i, b1i;
- logical ilazro;
- integer icompz, ifirst;
- doublereal b2i;
- integer ifrstm;
- doublereal a1r;
- integer istart;
- logical ilpivt;
- doublereal a2r, b1r, b2r;
- logical lquery;
- doublereal wr2, ad11, ad12, ad21, ad22, c11i, c22i;
- integer jch;
- doublereal c11r, c22r;
- logical ilq;
- doublereal u12l, tau, sqi;
- logical ilz;
- doublereal ulp, sqr, szi, szr;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
- /* $ SAFETY = 1.0E+0 ) */
-
- /* Decode JOB, COMPQ, COMPZ */
-
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- --alphar;
- --alphai;
- --beta;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1 * 1;
- q -= q_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- --work;
-
- /* Function Body */
- if (lsame_(job, "E")) {
- ilschr = FALSE_;
- ischur = 1;
- } else if (lsame_(job, "S")) {
- ilschr = TRUE_;
- ischur = 2;
- } else {
- ischur = 0;
- }
-
- if (lsame_(compq, "N")) {
- ilq = FALSE_;
- icompq = 1;
- } else if (lsame_(compq, "V")) {
- ilq = TRUE_;
- icompq = 2;
- } else if (lsame_(compq, "I")) {
- ilq = TRUE_;
- icompq = 3;
- } else {
- icompq = 0;
- }
-
- if (lsame_(compz, "N")) {
- ilz = FALSE_;
- icompz = 1;
- } else if (lsame_(compz, "V")) {
- ilz = TRUE_;
- icompz = 2;
- } else if (lsame_(compz, "I")) {
- ilz = TRUE_;
- icompz = 3;
- } else {
- icompz = 0;
- }
-
- /* Check Argument Values */
-
- *info = 0;
- work[1] = (doublereal) f2cmax(1,*n);
- lquery = *lwork == -1;
- if (ischur == 0) {
- *info = -1;
- } else if (icompq == 0) {
- *info = -2;
- } else if (icompz == 0) {
- *info = -3;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ilo < 1) {
- *info = -5;
- } else if (*ihi > *n || *ihi < *ilo - 1) {
- *info = -6;
- } else if (*ldh < *n) {
- *info = -8;
- } else if (*ldt < *n) {
- *info = -10;
- } else if (*ldq < 1 || ilq && *ldq < *n) {
- *info = -15;
- } else if (*ldz < 1 || ilz && *ldz < *n) {
- *info = -17;
- } else if (*lwork < f2cmax(1,*n) && ! lquery) {
- *info = -19;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DHGEQZ", &i__1, (ftnlen)6);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*n <= 0) {
- work[1] = 1.;
- return;
- }
-
- /* Initialize Q and Z */
-
- if (icompq == 3) {
- dlaset_("Full", n, n, &c_b12, &c_b13, &q[q_offset], ldq);
- }
- if (icompz == 3) {
- dlaset_("Full", n, n, &c_b12, &c_b13, &z__[z_offset], ldz);
- }
-
- /* Machine Constants */
-
- in = *ihi + 1 - *ilo;
- safmin = dlamch_("S");
- safmax = 1. / safmin;
- ulp = dlamch_("E") * dlamch_("B");
- anorm = dlanhs_("F", &in, &h__[*ilo + *ilo * h_dim1], ldh, &work[1]);
- bnorm = dlanhs_("F", &in, &t[*ilo + *ilo * t_dim1], ldt, &work[1]);
- /* Computing MAX */
- d__1 = safmin, d__2 = ulp * anorm;
- atol = f2cmax(d__1,d__2);
- /* Computing MAX */
- d__1 = safmin, d__2 = ulp * bnorm;
- btol = f2cmax(d__1,d__2);
- ascale = 1. / f2cmax(safmin,anorm);
- bscale = 1. / f2cmax(safmin,bnorm);
-
- /* Set Eigenvalues IHI+1:N */
-
- i__1 = *n;
- for (j = *ihi + 1; j <= i__1; ++j) {
- if (t[j + j * t_dim1] < 0.) {
- if (ilschr) {
- i__2 = j;
- for (jr = 1; jr <= i__2; ++jr) {
- h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
- t[jr + j * t_dim1] = -t[jr + j * t_dim1];
- /* L10: */
- }
- } else {
- h__[j + j * h_dim1] = -h__[j + j * h_dim1];
- t[j + j * t_dim1] = -t[j + j * t_dim1];
- }
- if (ilz) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
- /* L20: */
- }
- }
- }
- alphar[j] = h__[j + j * h_dim1];
- alphai[j] = 0.;
- beta[j] = t[j + j * t_dim1];
- /* L30: */
- }
-
- /* If IHI < ILO, skip QZ steps */
-
- if (*ihi < *ilo) {
- goto L380;
- }
-
- /* MAIN QZ ITERATION LOOP */
-
- /* Initialize dynamic indices */
-
- /* Eigenvalues ILAST+1:N have been found. */
- /* Column operations modify rows IFRSTM:whatever. */
- /* Row operations modify columns whatever:ILASTM. */
-
- /* If only eigenvalues are being computed, then */
- /* IFRSTM is the row of the last splitting row above row ILAST; */
- /* this is always at least ILO. */
- /* IITER counts iterations since the last eigenvalue was found, */
- /* to tell when to use an extraordinary shift. */
- /* MAXIT is the maximum number of QZ sweeps allowed. */
-
- ilast = *ihi;
- if (ilschr) {
- ifrstm = 1;
- ilastm = *n;
- } else {
- ifrstm = *ilo;
- ilastm = *ihi;
- }
- iiter = 0;
- eshift = 0.;
- maxit = (*ihi - *ilo + 1) * 30;
-
- i__1 = maxit;
- for (jiter = 1; jiter <= i__1; ++jiter) {
-
- /* Split the matrix if possible. */
-
- /* Two tests: */
- /* 1: H(j,j-1)=0 or j=ILO */
- /* 2: T(j,j)=0 */
-
- if (ilast == *ilo) {
-
- /* Special case: j=ILAST */
-
- goto L80;
- } else {
- if ((d__1 = h__[ilast + (ilast - 1) * h_dim1], abs(d__1)) <= atol)
- {
- h__[ilast + (ilast - 1) * h_dim1] = 0.;
- goto L80;
- }
- }
-
- if ((d__1 = t[ilast + ilast * t_dim1], abs(d__1)) <= btol) {
- t[ilast + ilast * t_dim1] = 0.;
- goto L70;
- }
-
- /* General case: j<ILAST */
-
- i__2 = *ilo;
- for (j = ilast - 1; j >= i__2; --j) {
-
- /* Test 1: for H(j,j-1)=0 or j=ILO */
-
- if (j == *ilo) {
- ilazro = TRUE_;
- } else {
- if ((d__1 = h__[j + (j - 1) * h_dim1], abs(d__1)) <= atol) {
- h__[j + (j - 1) * h_dim1] = 0.;
- ilazro = TRUE_;
- } else {
- ilazro = FALSE_;
- }
- }
-
- /* Test 2: for T(j,j)=0 */
-
- if ((d__1 = t[j + j * t_dim1], abs(d__1)) < btol) {
- t[j + j * t_dim1] = 0.;
-
- /* Test 1a: Check for 2 consecutive small subdiagonals in A */
-
- ilazr2 = FALSE_;
- if (! ilazro) {
- temp = (d__1 = h__[j + (j - 1) * h_dim1], abs(d__1));
- temp2 = (d__1 = h__[j + j * h_dim1], abs(d__1));
- tempr = f2cmax(temp,temp2);
- if (tempr < 1. && tempr != 0.) {
- temp /= tempr;
- temp2 /= tempr;
- }
- if (temp * (ascale * (d__1 = h__[j + 1 + j * h_dim1], abs(
- d__1))) <= temp2 * (ascale * atol)) {
- ilazr2 = TRUE_;
- }
- }
-
- /* If both tests pass (1 & 2), i.e., the leading diagonal */
- /* element of B in the block is zero, split a 1x1 block off */
- /* at the top. (I.e., at the J-th row/column) The leading */
- /* diagonal element of the remainder can also be zero, so */
- /* this may have to be done repeatedly. */
-
- if (ilazro || ilazr2) {
- i__3 = ilast - 1;
- for (jch = j; jch <= i__3; ++jch) {
- temp = h__[jch + jch * h_dim1];
- dlartg_(&temp, &h__[jch + 1 + jch * h_dim1], &c__, &s,
- &h__[jch + jch * h_dim1]);
- h__[jch + 1 + jch * h_dim1] = 0.;
- i__4 = ilastm - jch;
- drot_(&i__4, &h__[jch + (jch + 1) * h_dim1], ldh, &
- h__[jch + 1 + (jch + 1) * h_dim1], ldh, &c__,
- &s);
- i__4 = ilastm - jch;
- drot_(&i__4, &t[jch + (jch + 1) * t_dim1], ldt, &t[
- jch + 1 + (jch + 1) * t_dim1], ldt, &c__, &s);
- if (ilq) {
- drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
- * q_dim1 + 1], &c__1, &c__, &s);
- }
- if (ilazr2) {
- h__[jch + (jch - 1) * h_dim1] *= c__;
- }
- ilazr2 = FALSE_;
- if ((d__1 = t[jch + 1 + (jch + 1) * t_dim1], abs(d__1)
- ) >= btol) {
- if (jch + 1 >= ilast) {
- goto L80;
- } else {
- ifirst = jch + 1;
- goto L110;
- }
- }
- t[jch + 1 + (jch + 1) * t_dim1] = 0.;
- /* L40: */
- }
- goto L70;
- } else {
-
- /* Only test 2 passed -- chase the zero to T(ILAST,ILAST) */
- /* Then process as in the case T(ILAST,ILAST)=0 */
-
- i__3 = ilast - 1;
- for (jch = j; jch <= i__3; ++jch) {
- temp = t[jch + (jch + 1) * t_dim1];
- dlartg_(&temp, &t[jch + 1 + (jch + 1) * t_dim1], &c__,
- &s, &t[jch + (jch + 1) * t_dim1]);
- t[jch + 1 + (jch + 1) * t_dim1] = 0.;
- if (jch < ilastm - 1) {
- i__4 = ilastm - jch - 1;
- drot_(&i__4, &t[jch + (jch + 2) * t_dim1], ldt, &
- t[jch + 1 + (jch + 2) * t_dim1], ldt, &
- c__, &s);
- }
- i__4 = ilastm - jch + 2;
- drot_(&i__4, &h__[jch + (jch - 1) * h_dim1], ldh, &
- h__[jch + 1 + (jch - 1) * h_dim1], ldh, &c__,
- &s);
- if (ilq) {
- drot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
- * q_dim1 + 1], &c__1, &c__, &s);
- }
- temp = h__[jch + 1 + jch * h_dim1];
- dlartg_(&temp, &h__[jch + 1 + (jch - 1) * h_dim1], &
- c__, &s, &h__[jch + 1 + jch * h_dim1]);
- h__[jch + 1 + (jch - 1) * h_dim1] = 0.;
- i__4 = jch + 1 - ifrstm;
- drot_(&i__4, &h__[ifrstm + jch * h_dim1], &c__1, &h__[
- ifrstm + (jch - 1) * h_dim1], &c__1, &c__, &s)
- ;
- i__4 = jch - ifrstm;
- drot_(&i__4, &t[ifrstm + jch * t_dim1], &c__1, &t[
- ifrstm + (jch - 1) * t_dim1], &c__1, &c__, &s)
- ;
- if (ilz) {
- drot_(n, &z__[jch * z_dim1 + 1], &c__1, &z__[(jch
- - 1) * z_dim1 + 1], &c__1, &c__, &s);
- }
- /* L50: */
- }
- goto L70;
- }
- } else if (ilazro) {
-
- /* Only test 1 passed -- work on J:ILAST */
-
- ifirst = j;
- goto L110;
- }
-
- /* Neither test passed -- try next J */
-
- /* L60: */
- }
-
- /* (Drop-through is "impossible") */
-
- *info = *n + 1;
- goto L420;
-
- /* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a */
- /* 1x1 block. */
-
- L70:
- temp = h__[ilast + ilast * h_dim1];
- dlartg_(&temp, &h__[ilast + (ilast - 1) * h_dim1], &c__, &s, &h__[
- ilast + ilast * h_dim1]);
- h__[ilast + (ilast - 1) * h_dim1] = 0.;
- i__2 = ilast - ifrstm;
- drot_(&i__2, &h__[ifrstm + ilast * h_dim1], &c__1, &h__[ifrstm + (
- ilast - 1) * h_dim1], &c__1, &c__, &s);
- i__2 = ilast - ifrstm;
- drot_(&i__2, &t[ifrstm + ilast * t_dim1], &c__1, &t[ifrstm + (ilast -
- 1) * t_dim1], &c__1, &c__, &s);
- if (ilz) {
- drot_(n, &z__[ilast * z_dim1 + 1], &c__1, &z__[(ilast - 1) *
- z_dim1 + 1], &c__1, &c__, &s);
- }
-
- /* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHAR, ALPHAI, */
- /* and BETA */
-
- L80:
- if (t[ilast + ilast * t_dim1] < 0.) {
- if (ilschr) {
- i__2 = ilast;
- for (j = ifrstm; j <= i__2; ++j) {
- h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
- t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
- /* L90: */
- }
- } else {
- h__[ilast + ilast * h_dim1] = -h__[ilast + ilast * h_dim1];
- t[ilast + ilast * t_dim1] = -t[ilast + ilast * t_dim1];
- }
- if (ilz) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
- /* L100: */
- }
- }
- }
- alphar[ilast] = h__[ilast + ilast * h_dim1];
- alphai[ilast] = 0.;
- beta[ilast] = t[ilast + ilast * t_dim1];
-
- /* Go to next block -- exit if finished. */
-
- --ilast;
- if (ilast < *ilo) {
- goto L380;
- }
-
- /* Reset counters */
-
- iiter = 0;
- eshift = 0.;
- if (! ilschr) {
- ilastm = ilast;
- if (ifrstm > ilast) {
- ifrstm = *ilo;
- }
- }
- goto L350;
-
- /* QZ step */
-
- /* This iteration only involves rows/columns IFIRST:ILAST. We */
- /* assume IFIRST < ILAST, and that the diagonal of B is non-zero. */
-
- L110:
- ++iiter;
- if (! ilschr) {
- ifrstm = ifirst;
- }
-
- /* Compute single shifts. */
-
- /* At this point, IFIRST < ILAST, and the diagonal elements of */
- /* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in */
- /* magnitude) */
-
- if (iiter / 10 * 10 == iiter) {
-
- /* Exceptional shift. Chosen for no particularly good reason. */
- /* (Single shift only.) */
-
- if ((doublereal) maxit * safmin * (d__1 = h__[ilast + (ilast - 1)
- * h_dim1], abs(d__1)) < (d__2 = t[ilast - 1 + (ilast - 1)
- * t_dim1], abs(d__2))) {
- eshift = h__[ilast + (ilast - 1) * h_dim1] / t[ilast - 1 + (
- ilast - 1) * t_dim1];
- } else {
- eshift += 1. / (safmin * (doublereal) maxit);
- }
- s1 = 1.;
- wr = eshift;
-
- } else {
-
- /* Shifts based on the generalized eigenvalues of the */
- /* bottom-right 2x2 block of A and B. The first eigenvalue */
- /* returned by DLAG2 is the Wilkinson shift (AEP p.512), */
-
- d__1 = safmin * 100.;
- dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1
- + (ilast - 1) * t_dim1], ldt, &d__1, &s1, &s2, &wr, &wr2,
- &wi);
-
- if ((d__1 = wr / s1 * t[ilast + ilast * t_dim1] - h__[ilast +
- ilast * h_dim1], abs(d__1)) > (d__2 = wr2 / s2 * t[ilast
- + ilast * t_dim1] - h__[ilast + ilast * h_dim1], abs(d__2)
- )) {
- temp = wr;
- wr = wr2;
- wr2 = temp;
- temp = s1;
- s1 = s2;
- s2 = temp;
- }
- /* Computing MAX */
- /* Computing MAX */
- d__3 = 1., d__4 = abs(wr), d__3 = f2cmax(d__3,d__4), d__4 = abs(wi);
- d__1 = s1, d__2 = safmin * f2cmax(d__3,d__4);
- temp = f2cmax(d__1,d__2);
- if (wi != 0.) {
- goto L200;
- }
- }
-
- /* Fiddle with shift to avoid overflow */
-
- temp = f2cmin(ascale,1.) * (safmax * .5);
- if (s1 > temp) {
- scale = temp / s1;
- } else {
- scale = 1.;
- }
-
- temp = f2cmin(bscale,1.) * (safmax * .5);
- if (abs(wr) > temp) {
- /* Computing MIN */
- d__1 = scale, d__2 = temp / abs(wr);
- scale = f2cmin(d__1,d__2);
- }
- s1 = scale * s1;
- wr = scale * wr;
-
- /* Now check for two consecutive small subdiagonals. */
-
- i__2 = ifirst + 1;
- for (j = ilast - 1; j >= i__2; --j) {
- istart = j;
- temp = (d__1 = s1 * h__[j + (j - 1) * h_dim1], abs(d__1));
- temp2 = (d__1 = s1 * h__[j + j * h_dim1] - wr * t[j + j * t_dim1],
- abs(d__1));
- tempr = f2cmax(temp,temp2);
- if (tempr < 1. && tempr != 0.) {
- temp /= tempr;
- temp2 /= tempr;
- }
- if ((d__1 = ascale * h__[j + 1 + j * h_dim1] * temp, abs(d__1)) <=
- ascale * atol * temp2) {
- goto L130;
- }
- /* L120: */
- }
-
- istart = ifirst;
- L130:
-
- /* Do an implicit single-shift QZ sweep. */
-
- /* Initial Q */
-
- temp = s1 * h__[istart + istart * h_dim1] - wr * t[istart + istart *
- t_dim1];
- temp2 = s1 * h__[istart + 1 + istart * h_dim1];
- dlartg_(&temp, &temp2, &c__, &s, &tempr);
-
- /* Sweep */
-
- i__2 = ilast - 1;
- for (j = istart; j <= i__2; ++j) {
- if (j > istart) {
- temp = h__[j + (j - 1) * h_dim1];
- dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[
- j + (j - 1) * h_dim1]);
- h__[j + 1 + (j - 1) * h_dim1] = 0.;
- }
-
- i__3 = ilastm;
- for (jc = j; jc <= i__3; ++jc) {
- temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc *
- h_dim1];
- h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ *
- h__[j + 1 + jc * h_dim1];
- h__[j + jc * h_dim1] = temp;
- temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
- t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j
- + 1 + jc * t_dim1];
- t[j + jc * t_dim1] = temp2;
- /* L140: */
- }
- if (ilq) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) *
- q_dim1];
- q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
- q[jr + (j + 1) * q_dim1];
- q[jr + j * q_dim1] = temp;
- /* L150: */
- }
- }
-
- temp = t[j + 1 + (j + 1) * t_dim1];
- dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j +
- 1) * t_dim1]);
- t[j + 1 + j * t_dim1] = 0.;
-
- /* Computing MIN */
- i__4 = j + 2;
- i__3 = f2cmin(i__4,ilast);
- for (jr = ifrstm; jr <= i__3; ++jr) {
- temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j *
- h_dim1];
- h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
- h__[jr + j * h_dim1];
- h__[jr + (j + 1) * h_dim1] = temp;
- /* L160: */
- }
- i__3 = j;
- for (jr = ifrstm; jr <= i__3; ++jr) {
- temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
- ;
- t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
- jr + j * t_dim1];
- t[jr + (j + 1) * t_dim1] = temp;
- /* L170: */
- }
- if (ilz) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
- z_dim1];
- z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] +
- c__ * z__[jr + j * z_dim1];
- z__[jr + (j + 1) * z_dim1] = temp;
- /* L180: */
- }
- }
- /* L190: */
- }
-
- goto L350;
-
- /* Use Francis double-shift */
-
- /* Note: the Francis double-shift should work with real shifts, */
- /* but only if the block is at least 3x3. */
- /* This code may break if this point is reached with */
- /* a 2x2 block with real eigenvalues. */
-
- L200:
- if (ifirst + 1 == ilast) {
-
- /* Special case -- 2x2 block with complex eigenvectors */
-
- /* Step 1: Standardize, that is, rotate so that */
-
- /* ( B11 0 ) */
- /* B = ( ) with B11 non-negative. */
- /* ( 0 B22 ) */
-
- dlasv2_(&t[ilast - 1 + (ilast - 1) * t_dim1], &t[ilast - 1 +
- ilast * t_dim1], &t[ilast + ilast * t_dim1], &b22, &b11, &
- sr, &cr, &sl, &cl);
-
- if (b11 < 0.) {
- cr = -cr;
- sr = -sr;
- b11 = -b11;
- b22 = -b22;
- }
-
- i__2 = ilastm + 1 - ifirst;
- drot_(&i__2, &h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &h__[
- ilast + (ilast - 1) * h_dim1], ldh, &cl, &sl);
- i__2 = ilast + 1 - ifrstm;
- drot_(&i__2, &h__[ifrstm + (ilast - 1) * h_dim1], &c__1, &h__[
- ifrstm + ilast * h_dim1], &c__1, &cr, &sr);
-
- if (ilast < ilastm) {
- i__2 = ilastm - ilast;
- drot_(&i__2, &t[ilast - 1 + (ilast + 1) * t_dim1], ldt, &t[
- ilast + (ilast + 1) * t_dim1], ldt, &cl, &sl);
- }
- if (ifrstm < ilast - 1) {
- i__2 = ifirst - ifrstm;
- drot_(&i__2, &t[ifrstm + (ilast - 1) * t_dim1], &c__1, &t[
- ifrstm + ilast * t_dim1], &c__1, &cr, &sr);
- }
-
- if (ilq) {
- drot_(n, &q[(ilast - 1) * q_dim1 + 1], &c__1, &q[ilast *
- q_dim1 + 1], &c__1, &cl, &sl);
- }
- if (ilz) {
- drot_(n, &z__[(ilast - 1) * z_dim1 + 1], &c__1, &z__[ilast *
- z_dim1 + 1], &c__1, &cr, &sr);
- }
-
- t[ilast - 1 + (ilast - 1) * t_dim1] = b11;
- t[ilast - 1 + ilast * t_dim1] = 0.;
- t[ilast + (ilast - 1) * t_dim1] = 0.;
- t[ilast + ilast * t_dim1] = b22;
-
- /* If B22 is negative, negate column ILAST */
-
- if (b22 < 0.) {
- i__2 = ilast;
- for (j = ifrstm; j <= i__2; ++j) {
- h__[j + ilast * h_dim1] = -h__[j + ilast * h_dim1];
- t[j + ilast * t_dim1] = -t[j + ilast * t_dim1];
- /* L210: */
- }
-
- if (ilz) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- z__[j + ilast * z_dim1] = -z__[j + ilast * z_dim1];
- /* L220: */
- }
- }
- b22 = -b22;
- }
-
- /* Step 2: Compute ALPHAR, ALPHAI, and BETA (see refs.) */
-
- /* Recompute shift */
-
- d__1 = safmin * 100.;
- dlag2_(&h__[ilast - 1 + (ilast - 1) * h_dim1], ldh, &t[ilast - 1
- + (ilast - 1) * t_dim1], ldt, &d__1, &s1, &temp, &wr, &
- temp2, &wi);
-
- /* If standardization has perturbed the shift onto real line, */
- /* do another (real single-shift) QR step. */
-
- if (wi == 0.) {
- goto L350;
- }
- s1inv = 1. / s1;
-
- /* Do EISPACK (QZVAL) computation of alpha and beta */
-
- a11 = h__[ilast - 1 + (ilast - 1) * h_dim1];
- a21 = h__[ilast + (ilast - 1) * h_dim1];
- a12 = h__[ilast - 1 + ilast * h_dim1];
- a22 = h__[ilast + ilast * h_dim1];
-
- /* Compute complex Givens rotation on right */
- /* (Assume some element of C = (sA - wB) > unfl ) */
- /* __ */
- /* (sA - wB) ( CZ -SZ ) */
- /* ( SZ CZ ) */
-
- c11r = s1 * a11 - wr * b11;
- c11i = -wi * b11;
- c12 = s1 * a12;
- c21 = s1 * a21;
- c22r = s1 * a22 - wr * b22;
- c22i = -wi * b22;
-
- if (abs(c11r) + abs(c11i) + abs(c12) > abs(c21) + abs(c22r) + abs(
- c22i)) {
- t1 = dlapy3_(&c12, &c11r, &c11i);
- cz = c12 / t1;
- szr = -c11r / t1;
- szi = -c11i / t1;
- } else {
- cz = dlapy2_(&c22r, &c22i);
- if (cz <= safmin) {
- cz = 0.;
- szr = 1.;
- szi = 0.;
- } else {
- tempr = c22r / cz;
- tempi = c22i / cz;
- t1 = dlapy2_(&cz, &c21);
- cz /= t1;
- szr = -c21 * tempr / t1;
- szi = c21 * tempi / t1;
- }
- }
-
- /* Compute Givens rotation on left */
-
- /* ( CQ SQ ) */
- /* ( __ ) A or B */
- /* ( -SQ CQ ) */
-
- an = abs(a11) + abs(a12) + abs(a21) + abs(a22);
- bn = abs(b11) + abs(b22);
- wabs = abs(wr) + abs(wi);
- if (s1 * an > wabs * bn) {
- cq = cz * b11;
- sqr = szr * b22;
- sqi = -szi * b22;
- } else {
- a1r = cz * a11 + szr * a12;
- a1i = szi * a12;
- a2r = cz * a21 + szr * a22;
- a2i = szi * a22;
- cq = dlapy2_(&a1r, &a1i);
- if (cq <= safmin) {
- cq = 0.;
- sqr = 1.;
- sqi = 0.;
- } else {
- tempr = a1r / cq;
- tempi = a1i / cq;
- sqr = tempr * a2r + tempi * a2i;
- sqi = tempi * a2r - tempr * a2i;
- }
- }
- t1 = dlapy3_(&cq, &sqr, &sqi);
- cq /= t1;
- sqr /= t1;
- sqi /= t1;
-
- /* Compute diagonal elements of QBZ */
-
- tempr = sqr * szr - sqi * szi;
- tempi = sqr * szi + sqi * szr;
- b1r = cq * cz * b11 + tempr * b22;
- b1i = tempi * b22;
- b1a = dlapy2_(&b1r, &b1i);
- b2r = cq * cz * b22 + tempr * b11;
- b2i = -tempi * b11;
- b2a = dlapy2_(&b2r, &b2i);
-
- /* Normalize so beta > 0, and Im( alpha1 ) > 0 */
-
- beta[ilast - 1] = b1a;
- beta[ilast] = b2a;
- alphar[ilast - 1] = wr * b1a * s1inv;
- alphai[ilast - 1] = wi * b1a * s1inv;
- alphar[ilast] = wr * b2a * s1inv;
- alphai[ilast] = -(wi * b2a) * s1inv;
-
- /* Step 3: Go to next block -- exit if finished. */
-
- ilast = ifirst - 1;
- if (ilast < *ilo) {
- goto L380;
- }
-
- /* Reset counters */
-
- iiter = 0;
- eshift = 0.;
- if (! ilschr) {
- ilastm = ilast;
- if (ifrstm > ilast) {
- ifrstm = *ilo;
- }
- }
- goto L350;
- } else {
-
- /* Usual case: 3x3 or larger block, using Francis implicit */
- /* double-shift */
-
- /* 2 */
- /* Eigenvalue equation is w - c w + d = 0, */
-
- /* -1 2 -1 */
- /* so compute 1st column of (A B ) - c A B + d */
- /* using the formula in QZIT (from EISPACK) */
-
- /* We assume that the block is at least 3x3 */
-
- ad11 = ascale * h__[ilast - 1 + (ilast - 1) * h_dim1] / (bscale *
- t[ilast - 1 + (ilast - 1) * t_dim1]);
- ad21 = ascale * h__[ilast + (ilast - 1) * h_dim1] / (bscale * t[
- ilast - 1 + (ilast - 1) * t_dim1]);
- ad12 = ascale * h__[ilast - 1 + ilast * h_dim1] / (bscale * t[
- ilast + ilast * t_dim1]);
- ad22 = ascale * h__[ilast + ilast * h_dim1] / (bscale * t[ilast +
- ilast * t_dim1]);
- u12 = t[ilast - 1 + ilast * t_dim1] / t[ilast + ilast * t_dim1];
- ad11l = ascale * h__[ifirst + ifirst * h_dim1] / (bscale * t[
- ifirst + ifirst * t_dim1]);
- ad21l = ascale * h__[ifirst + 1 + ifirst * h_dim1] / (bscale * t[
- ifirst + ifirst * t_dim1]);
- ad12l = ascale * h__[ifirst + (ifirst + 1) * h_dim1] / (bscale *
- t[ifirst + 1 + (ifirst + 1) * t_dim1]);
- ad22l = ascale * h__[ifirst + 1 + (ifirst + 1) * h_dim1] / (
- bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
- ad32l = ascale * h__[ifirst + 2 + (ifirst + 1) * h_dim1] / (
- bscale * t[ifirst + 1 + (ifirst + 1) * t_dim1]);
- u12l = t[ifirst + (ifirst + 1) * t_dim1] / t[ifirst + 1 + (ifirst
- + 1) * t_dim1];
-
- v[0] = (ad11 - ad11l) * (ad22 - ad11l) - ad12 * ad21 + ad21 * u12
- * ad11l + (ad12l - ad11l * u12l) * ad21l;
- v[1] = (ad22l - ad11l - ad21l * u12l - (ad11 - ad11l) - (ad22 -
- ad11l) + ad21 * u12) * ad21l;
- v[2] = ad32l * ad21l;
-
- istart = ifirst;
-
- dlarfg_(&c__3, v, &v[1], &c__1, &tau);
- v[0] = 1.;
-
- /* Sweep */
-
- i__2 = ilast - 2;
- for (j = istart; j <= i__2; ++j) {
-
- /* All but last elements: use 3x3 Householder transforms. */
-
- /* Zero (j-1)st column of A */
-
- if (j > istart) {
- v[0] = h__[j + (j - 1) * h_dim1];
- v[1] = h__[j + 1 + (j - 1) * h_dim1];
- v[2] = h__[j + 2 + (j - 1) * h_dim1];
-
- dlarfg_(&c__3, &h__[j + (j - 1) * h_dim1], &v[1], &c__1, &
- tau);
- v[0] = 1.;
- h__[j + 1 + (j - 1) * h_dim1] = 0.;
- h__[j + 2 + (j - 1) * h_dim1] = 0.;
- }
-
- i__3 = ilastm;
- for (jc = j; jc <= i__3; ++jc) {
- temp = tau * (h__[j + jc * h_dim1] + v[1] * h__[j + 1 +
- jc * h_dim1] + v[2] * h__[j + 2 + jc * h_dim1]);
- h__[j + jc * h_dim1] -= temp;
- h__[j + 1 + jc * h_dim1] -= temp * v[1];
- h__[j + 2 + jc * h_dim1] -= temp * v[2];
- temp2 = tau * (t[j + jc * t_dim1] + v[1] * t[j + 1 + jc *
- t_dim1] + v[2] * t[j + 2 + jc * t_dim1]);
- t[j + jc * t_dim1] -= temp2;
- t[j + 1 + jc * t_dim1] -= temp2 * v[1];
- t[j + 2 + jc * t_dim1] -= temp2 * v[2];
- /* L230: */
- }
- if (ilq) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- temp = tau * (q[jr + j * q_dim1] + v[1] * q[jr + (j +
- 1) * q_dim1] + v[2] * q[jr + (j + 2) * q_dim1]
- );
- q[jr + j * q_dim1] -= temp;
- q[jr + (j + 1) * q_dim1] -= temp * v[1];
- q[jr + (j + 2) * q_dim1] -= temp * v[2];
- /* L240: */
- }
- }
-
- /* Zero j-th column of B (see DLAGBC for details) */
-
- /* Swap rows to pivot */
-
- ilpivt = FALSE_;
- /* Computing MAX */
- d__3 = (d__1 = t[j + 1 + (j + 1) * t_dim1], abs(d__1)), d__4 =
- (d__2 = t[j + 1 + (j + 2) * t_dim1], abs(d__2));
- temp = f2cmax(d__3,d__4);
- /* Computing MAX */
- d__3 = (d__1 = t[j + 2 + (j + 1) * t_dim1], abs(d__1)), d__4 =
- (d__2 = t[j + 2 + (j + 2) * t_dim1], abs(d__2));
- temp2 = f2cmax(d__3,d__4);
- if (f2cmax(temp,temp2) < safmin) {
- scale = 0.;
- u1 = 1.;
- u2 = 0.;
- goto L250;
- } else if (temp >= temp2) {
- w11 = t[j + 1 + (j + 1) * t_dim1];
- w21 = t[j + 2 + (j + 1) * t_dim1];
- w12 = t[j + 1 + (j + 2) * t_dim1];
- w22 = t[j + 2 + (j + 2) * t_dim1];
- u1 = t[j + 1 + j * t_dim1];
- u2 = t[j + 2 + j * t_dim1];
- } else {
- w21 = t[j + 1 + (j + 1) * t_dim1];
- w11 = t[j + 2 + (j + 1) * t_dim1];
- w22 = t[j + 1 + (j + 2) * t_dim1];
- w12 = t[j + 2 + (j + 2) * t_dim1];
- u2 = t[j + 1 + j * t_dim1];
- u1 = t[j + 2 + j * t_dim1];
- }
-
- /* Swap columns if nec. */
-
- if (abs(w12) > abs(w11)) {
- ilpivt = TRUE_;
- temp = w12;
- temp2 = w22;
- w12 = w11;
- w22 = w21;
- w11 = temp;
- w21 = temp2;
- }
-
- /* LU-factor */
-
- temp = w21 / w11;
- u2 -= temp * u1;
- w22 -= temp * w12;
- w21 = 0.;
-
- /* Compute SCALE */
-
- scale = 1.;
- if (abs(w22) < safmin) {
- scale = 0.;
- u2 = 1.;
- u1 = -w12 / w11;
- goto L250;
- }
- if (abs(w22) < abs(u2)) {
- scale = (d__1 = w22 / u2, abs(d__1));
- }
- if (abs(w11) < abs(u1)) {
- /* Computing MIN */
- d__2 = scale, d__3 = (d__1 = w11 / u1, abs(d__1));
- scale = f2cmin(d__2,d__3);
- }
-
- /* Solve */
-
- u2 = scale * u2 / w22;
- u1 = (scale * u1 - w12 * u2) / w11;
-
- L250:
- if (ilpivt) {
- temp = u2;
- u2 = u1;
- u1 = temp;
- }
-
- /* Compute Householder Vector */
-
- /* Computing 2nd power */
- d__1 = scale;
- /* Computing 2nd power */
- d__2 = u1;
- /* Computing 2nd power */
- d__3 = u2;
- t1 = sqrt(d__1 * d__1 + d__2 * d__2 + d__3 * d__3);
- tau = scale / t1 + 1.;
- vs = -1. / (scale + t1);
- v[0] = 1.;
- v[1] = vs * u1;
- v[2] = vs * u2;
-
- /* Apply transformations from the right. */
-
- /* Computing MIN */
- i__4 = j + 3;
- i__3 = f2cmin(i__4,ilast);
- for (jr = ifrstm; jr <= i__3; ++jr) {
- temp = tau * (h__[jr + j * h_dim1] + v[1] * h__[jr + (j +
- 1) * h_dim1] + v[2] * h__[jr + (j + 2) * h_dim1]);
- h__[jr + j * h_dim1] -= temp;
- h__[jr + (j + 1) * h_dim1] -= temp * v[1];
- h__[jr + (j + 2) * h_dim1] -= temp * v[2];
- /* L260: */
- }
- i__3 = j + 2;
- for (jr = ifrstm; jr <= i__3; ++jr) {
- temp = tau * (t[jr + j * t_dim1] + v[1] * t[jr + (j + 1) *
- t_dim1] + v[2] * t[jr + (j + 2) * t_dim1]);
- t[jr + j * t_dim1] -= temp;
- t[jr + (j + 1) * t_dim1] -= temp * v[1];
- t[jr + (j + 2) * t_dim1] -= temp * v[2];
- /* L270: */
- }
- if (ilz) {
- i__3 = *n;
- for (jr = 1; jr <= i__3; ++jr) {
- temp = tau * (z__[jr + j * z_dim1] + v[1] * z__[jr + (
- j + 1) * z_dim1] + v[2] * z__[jr + (j + 2) *
- z_dim1]);
- z__[jr + j * z_dim1] -= temp;
- z__[jr + (j + 1) * z_dim1] -= temp * v[1];
- z__[jr + (j + 2) * z_dim1] -= temp * v[2];
- /* L280: */
- }
- }
- t[j + 1 + j * t_dim1] = 0.;
- t[j + 2 + j * t_dim1] = 0.;
- /* L290: */
- }
-
- /* Last elements: Use Givens rotations */
-
- /* Rotations from the left */
-
- j = ilast - 1;
- temp = h__[j + (j - 1) * h_dim1];
- dlartg_(&temp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &h__[j +
- (j - 1) * h_dim1]);
- h__[j + 1 + (j - 1) * h_dim1] = 0.;
-
- i__2 = ilastm;
- for (jc = j; jc <= i__2; ++jc) {
- temp = c__ * h__[j + jc * h_dim1] + s * h__[j + 1 + jc *
- h_dim1];
- h__[j + 1 + jc * h_dim1] = -s * h__[j + jc * h_dim1] + c__ *
- h__[j + 1 + jc * h_dim1];
- h__[j + jc * h_dim1] = temp;
- temp2 = c__ * t[j + jc * t_dim1] + s * t[j + 1 + jc * t_dim1];
- t[j + 1 + jc * t_dim1] = -s * t[j + jc * t_dim1] + c__ * t[j
- + 1 + jc * t_dim1];
- t[j + jc * t_dim1] = temp2;
- /* L300: */
- }
- if (ilq) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- temp = c__ * q[jr + j * q_dim1] + s * q[jr + (j + 1) *
- q_dim1];
- q[jr + (j + 1) * q_dim1] = -s * q[jr + j * q_dim1] + c__ *
- q[jr + (j + 1) * q_dim1];
- q[jr + j * q_dim1] = temp;
- /* L310: */
- }
- }
-
- /* Rotations from the right. */
-
- temp = t[j + 1 + (j + 1) * t_dim1];
- dlartg_(&temp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j +
- 1) * t_dim1]);
- t[j + 1 + j * t_dim1] = 0.;
-
- i__2 = ilast;
- for (jr = ifrstm; jr <= i__2; ++jr) {
- temp = c__ * h__[jr + (j + 1) * h_dim1] + s * h__[jr + j *
- h_dim1];
- h__[jr + j * h_dim1] = -s * h__[jr + (j + 1) * h_dim1] + c__ *
- h__[jr + j * h_dim1];
- h__[jr + (j + 1) * h_dim1] = temp;
- /* L320: */
- }
- i__2 = ilast - 1;
- for (jr = ifrstm; jr <= i__2; ++jr) {
- temp = c__ * t[jr + (j + 1) * t_dim1] + s * t[jr + j * t_dim1]
- ;
- t[jr + j * t_dim1] = -s * t[jr + (j + 1) * t_dim1] + c__ * t[
- jr + j * t_dim1];
- t[jr + (j + 1) * t_dim1] = temp;
- /* L330: */
- }
- if (ilz) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- temp = c__ * z__[jr + (j + 1) * z_dim1] + s * z__[jr + j *
- z_dim1];
- z__[jr + j * z_dim1] = -s * z__[jr + (j + 1) * z_dim1] +
- c__ * z__[jr + j * z_dim1];
- z__[jr + (j + 1) * z_dim1] = temp;
- /* L340: */
- }
- }
-
- /* End of Double-Shift code */
-
- }
-
- goto L350;
-
- /* End of iteration loop */
-
- L350:
- /* L360: */
- ;
- }
-
- /* Drop-through = non-convergence */
-
- *info = ilast;
- goto L420;
-
- /* Successful completion of all QZ steps */
-
- L380:
-
- /* Set Eigenvalues 1:ILO-1 */
-
- i__1 = *ilo - 1;
- for (j = 1; j <= i__1; ++j) {
- if (t[j + j * t_dim1] < 0.) {
- if (ilschr) {
- i__2 = j;
- for (jr = 1; jr <= i__2; ++jr) {
- h__[jr + j * h_dim1] = -h__[jr + j * h_dim1];
- t[jr + j * t_dim1] = -t[jr + j * t_dim1];
- /* L390: */
- }
- } else {
- h__[j + j * h_dim1] = -h__[j + j * h_dim1];
- t[j + j * t_dim1] = -t[j + j * t_dim1];
- }
- if (ilz) {
- i__2 = *n;
- for (jr = 1; jr <= i__2; ++jr) {
- z__[jr + j * z_dim1] = -z__[jr + j * z_dim1];
- /* L400: */
- }
- }
- }
- alphar[j] = h__[j + j * h_dim1];
- alphai[j] = 0.;
- beta[j] = t[j + j * t_dim1];
- /* L410: */
- }
-
- /* Normal Termination */
-
- *info = 0;
-
- /* Exit (other than argument error) -- return optimal workspace size */
-
- L420:
- work[1] = (doublereal) (*n);
- return;
-
- /* End of DHGEQZ */
-
- } /* dhgeqz_ */
|