|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__6 = 6;
- static integer c__0 = 0;
- static integer c__2 = 2;
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b109 = 0.;
-
- /* > \brief <b> DGESVDX computes the singular value decomposition (SVD) for GE matrices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DGESVDX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvdx
- .f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvdx
- .f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvdx
- .f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, */
- /* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, */
- /* $ LWORK, IWORK, INFO ) */
-
-
- /* CHARACTER JOBU, JOBVT, RANGE */
- /* INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS */
- /* DOUBLE PRECISION VL, VU */
- /* INTEGER IWORK( * ) */
- /* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), */
- /* $ VT( LDVT, * ), WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DGESVDX computes the singular value decomposition (SVD) of a real */
- /* > M-by-N matrix A, optionally computing the left and/or right singular */
- /* > vectors. The SVD is written */
- /* > */
- /* > A = U * SIGMA * transpose(V) */
- /* > */
- /* > where SIGMA is an M-by-N matrix which is zero except for its */
- /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
- /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
- /* > are the singular values of A; they are real and non-negative, and */
- /* > are returned in descending order. The first f2cmin(m,n) columns of */
- /* > U and V are the left and right singular vectors of A. */
- /* > */
- /* > DGESVDX uses an eigenvalue problem for obtaining the SVD, which */
- /* > allows for the computation of a subset of singular values and */
- /* > vectors. See DBDSVDX for details. */
- /* > */
- /* > Note that the routine returns V**T, not V. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] JOBU */
- /* > \verbatim */
- /* > JOBU is CHARACTER*1 */
- /* > Specifies options for computing all or part of the matrix U: */
- /* > = 'V': the first f2cmin(m,n) columns of U (the left singular */
- /* > vectors) or as specified by RANGE are returned in */
- /* > the array U; */
- /* > = 'N': no columns of U (no left singular vectors) are */
- /* > computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] JOBVT */
- /* > \verbatim */
- /* > JOBVT is CHARACTER*1 */
- /* > Specifies options for computing all or part of the matrix */
- /* > V**T: */
- /* > = 'V': the first f2cmin(m,n) rows of V**T (the right singular */
- /* > vectors) or as specified by RANGE are returned in */
- /* > the array VT; */
- /* > = 'N': no rows of V**T (no right singular vectors) are */
- /* > computed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] RANGE */
- /* > \verbatim */
- /* > RANGE is CHARACTER*1 */
- /* > = 'A': all singular values will be found. */
- /* > = 'V': all singular values in the half-open interval (VL,VU] */
- /* > will be found. */
- /* > = 'I': the IL-th through IU-th singular values will be found. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows of the input matrix A. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns of the input matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
- /* > On entry, the M-by-N matrix A. */
- /* > On exit, the contents of A are destroyed. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VL */
- /* > \verbatim */
- /* > VL is DOUBLE PRECISION */
- /* > If RANGE='V', the lower bound of the interval to */
- /* > be searched for singular values. VU > VL. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] VU */
- /* > \verbatim */
- /* > VU is DOUBLE PRECISION */
- /* > If RANGE='V', the upper bound of the interval to */
- /* > be searched for singular values. VU > VL. */
- /* > Not referenced if RANGE = 'A' or 'I'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IL */
- /* > \verbatim */
- /* > IL is INTEGER */
- /* > If RANGE='I', the index of the */
- /* > smallest singular value to be returned. */
- /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IU */
- /* > \verbatim */
- /* > IU is INTEGER */
- /* > If RANGE='I', the index of the */
- /* > largest singular value to be returned. */
- /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
- /* > Not referenced if RANGE = 'A' or 'V'. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] NS */
- /* > \verbatim */
- /* > NS is INTEGER */
- /* > The total number of singular values found, */
- /* > 0 <= NS <= f2cmin(M,N). */
- /* > If RANGE = 'A', NS = f2cmin(M,N); if RANGE = 'I', NS = IU-IL+1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] S */
- /* > \verbatim */
- /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
- /* > The singular values of A, sorted so that S(i) >= S(i+1). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is DOUBLE PRECISION array, dimension (LDU,UCOL) */
- /* > If JOBU = 'V', U contains columns of U (the left singular */
- /* > vectors, stored columnwise) as specified by RANGE; if */
- /* > JOBU = 'N', U is not referenced. */
- /* > Note: The user must ensure that UCOL >= NS; if RANGE = 'V', */
- /* > the exact value of NS is not known in advance and an upper */
- /* > bound must be used. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > The leading dimension of the array U. LDU >= 1; if */
- /* > JOBU = 'V', LDU >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VT */
- /* > \verbatim */
- /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
- /* > If JOBVT = 'V', VT contains the rows of V**T (the right singular */
- /* > vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', */
- /* > VT is not referenced. */
- /* > Note: The user must ensure that LDVT >= NS; if RANGE = 'V', */
- /* > the exact value of NS is not known in advance and an upper */
- /* > bound must be used. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVT */
- /* > \verbatim */
- /* > LDVT is INTEGER */
- /* > The leading dimension of the array VT. LDVT >= 1; if */
- /* > JOBVT = 'V', LDVT >= NS (see above). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of the array WORK. */
- /* > LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see */
- /* > comments inside the code): */
- /* > - PATH 1 (M much larger than N) */
- /* > - PATH 1t (N much larger than M) */
- /* > LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. */
- /* > For good performance, LWORK should generally be larger. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IWORK */
- /* > \verbatim */
- /* > IWORK is INTEGER array, dimension (12*MIN(M,N)) */
- /* > If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, */
- /* > then IWORK contains the indices of the eigenvectors that failed */
- /* > to converge in DBDSVDX/DSTEVX. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, then i eigenvectors failed to converge */
- /* > in DBDSVDX/DSTEVX. */
- /* > if INFO = N*2 + 1, an internal error occurred in */
- /* > DBDSVDX */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup doubleGEsing */
-
- /* ===================================================================== */
- /* Subroutine */ void dgesvdx_(char *jobu, char *jobvt, char *range, integer *
- m, integer *n, doublereal *a, integer *lda, doublereal *vl,
- doublereal *vu, integer *il, integer *iu, integer *ns, doublereal *s,
- doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
- doublereal *work, integer *lwork, integer *iwork, integer *info)
- {
- /* System generated locals */
- address a__1[2];
- integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
- i__2, i__3;
- char ch__1[2];
-
- /* Local variables */
- integer iscl;
- logical alls, inds;
- integer ilqf;
- doublereal anrm;
- integer ierr, iqrf, itau;
- char jobz[1];
- logical vals;
- integer i__, j;
- extern logical lsame_(char *, char *);
- integer iltgk, itemp, minmn;
- extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer itaup, itauq, iutgk, itgkz, mnthr;
- logical wantu;
- integer id, ie;
- extern /* Subroutine */ void dgebrd_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *);
- extern doublereal dlamch_(char *), dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, integer *),
- dgeqrf_(integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *), dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- doublereal bignum, abstol;
- extern /* Subroutine */ void dormbr_(char *, char *, char *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, integer *);
- char rngtgk[1];
- extern /* Subroutine */ void dormlq_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *),
- dormqr_(char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *);
- integer minwrk, maxwrk;
- doublereal smlnum;
- logical lquery, wantvt;
- doublereal dum[1], eps;
- extern /* Subroutine */ void dbdsvdx_(char *, char *, char *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *);
-
-
- /* -- LAPACK driver routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input arguments. */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --s;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --work;
- --iwork;
-
- /* Function Body */
- *ns = 0;
- *info = 0;
- abstol = dlamch_("S") * 2;
- lquery = *lwork == -1;
- minmn = f2cmin(*m,*n);
- wantu = lsame_(jobu, "V");
- wantvt = lsame_(jobvt, "V");
- if (wantu || wantvt) {
- *(unsigned char *)jobz = 'V';
- } else {
- *(unsigned char *)jobz = 'N';
- }
- alls = lsame_(range, "A");
- vals = lsame_(range, "V");
- inds = lsame_(range, "I");
-
- *info = 0;
- if (! lsame_(jobu, "V") && ! lsame_(jobu, "N")) {
- *info = -1;
- } else if (! lsame_(jobvt, "V") && ! lsame_(jobvt,
- "N")) {
- *info = -2;
- } else if (! (alls || vals || inds)) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*m > *lda) {
- *info = -7;
- } else if (minmn > 0) {
- if (vals) {
- if (*vl < 0.) {
- *info = -8;
- } else if (*vu <= *vl) {
- *info = -9;
- }
- } else if (inds) {
- if (*il < 1 || *il > f2cmax(1,minmn)) {
- *info = -10;
- } else if (*iu < f2cmin(minmn,*il) || *iu > minmn) {
- *info = -11;
- }
- }
- if (*info == 0) {
- if (wantu && *ldu < *m) {
- *info = -15;
- } else if (wantvt) {
- if (inds) {
- if (*ldvt < *iu - *il + 1) {
- *info = -17;
- }
- } else if (*ldvt < minmn) {
- *info = -17;
- }
- }
- }
- }
-
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV.) */
-
- if (*info == 0) {
- minwrk = 1;
- maxwrk = 1;
- if (minmn > 0) {
- if (*m >= *n) {
- /* Writing concatenation */
- i__1[0] = 1, a__1[0] = jobu;
- i__1[1] = 1, a__1[1] = jobvt;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
- ftnlen)6, (ftnlen)2);
- if (*m >= mnthr) {
-
- /* Path 1 (M much larger than N) */
-
- maxwrk = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *n * (*n + 5) + (*n << 1) * ilaenv_(
- &c__1, "DGEBRD", " ", n, n, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- if (wantu) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n *
- ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- }
- if (wantvt) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *n * (*n * 3 + 6) + *n *
- ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- }
- minwrk = *n * (*n * 3 + 20);
- } else {
-
- /* Path 2 (M at least N, but not much larger) */
-
- maxwrk = (*n << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- if (wantu) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n *
- ilaenv_(&c__1, "DORMQR", " ", n, n, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- }
- if (wantvt) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *n * ((*n << 1) + 5) + *n *
- ilaenv_(&c__1, "DORMLQ", " ", n, n, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- }
- /* Computing MAX */
- i__2 = *n * ((*n << 1) + 19), i__3 = (*n << 2) + *m;
- minwrk = f2cmax(i__2,i__3);
- }
- } else {
- /* Writing concatenation */
- i__1[0] = 1, a__1[0] = jobu;
- i__1[1] = 1, a__1[1] = jobvt;
- s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
- mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
- ftnlen)6, (ftnlen)2);
- if (*n >= mnthr) {
-
- /* Path 1t (N much larger than M) */
-
- maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &
- c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *m * (*m + 5) + (*m << 1) * ilaenv_(
- &c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (ftnlen)
- 6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- if (wantu) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m *
- ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- }
- if (wantvt) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *m * (*m * 3 + 6) + *m *
- ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- }
- minwrk = *m * (*m * 3 + 20);
- } else {
-
- /* Path 2t (N at least M, but not much larger) */
-
- maxwrk = (*m << 2) + (*m + *n) * ilaenv_(&c__1, "DGEBRD",
- " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
- if (wantu) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m *
- ilaenv_(&c__1, "DORMQR", " ", m, m, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- }
- if (wantvt) {
- /* Computing MAX */
- i__2 = maxwrk, i__3 = *m * ((*m << 1) + 5) + *m *
- ilaenv_(&c__1, "DORMLQ", " ", m, m, &c_n1, &
- c_n1, (ftnlen)6, (ftnlen)1);
- maxwrk = f2cmax(i__2,i__3);
- }
- /* Computing MAX */
- i__2 = *m * ((*m << 1) + 19), i__3 = (*m << 2) + *n;
- minwrk = f2cmax(i__2,i__3);
- }
- }
- }
- maxwrk = f2cmax(maxwrk,minwrk);
- work[1] = (doublereal) maxwrk;
-
- if (*lwork < minwrk && ! lquery) {
- *info = -19;
- }
- }
-
- if (*info != 0) {
- i__2 = -(*info);
- xerbla_("DGESVDX", &i__2, (ftnlen)7);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible */
-
- if (*m == 0 || *n == 0) {
- return;
- }
-
- /* Set singular values indices accord to RANGE. */
-
- if (alls) {
- *(unsigned char *)rngtgk = 'I';
- iltgk = 1;
- iutgk = f2cmin(*m,*n);
- } else if (inds) {
- *(unsigned char *)rngtgk = 'I';
- iltgk = *il;
- iutgk = *iu;
- } else {
- *(unsigned char *)rngtgk = 'V';
- iltgk = 0;
- iutgk = 0;
- }
-
- /* Get machine constants */
-
- eps = dlamch_("P");
- smlnum = sqrt(dlamch_("S")) / eps;
- bignum = 1. / smlnum;
-
- /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
-
- anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
- iscl = 0;
- if (anrm > 0. && anrm < smlnum) {
- iscl = 1;
- dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
- info);
- } else if (anrm > bignum) {
- iscl = 1;
- dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
- info);
- }
-
- if (*m >= *n) {
-
- /* A has at least as many rows as columns. If A has sufficiently */
- /* more rows than columns, first reduce A using the QR */
- /* decomposition. */
-
- if (*m >= mnthr) {
-
- /* Path 1 (M much larger than N): */
- /* A = Q * R = Q * ( QB * B * PB**T ) */
- /* = Q * ( QB * ( UB * S * VB**T ) * PB**T ) */
- /* U = Q * QB * UB; V**T = VB**T * PB**T */
-
- /* Compute A=Q*R */
- /* (Workspace: need 2*N, prefer N+N*NB) */
-
- itau = 1;
- itemp = itau + *n;
- i__2 = *lwork - itemp + 1;
- dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
- info);
-
- /* Copy R into WORK and bidiagonalize it: */
- /* (Workspace: need N*N+5*N, prefer N*N+4*N+2*N*NB) */
-
- iqrf = itemp;
- id = iqrf + *n * *n;
- ie = id + *n;
- itauq = ie + *n;
- itaup = itauq + *n;
- itemp = itaup + *n;
- dlacpy_("U", n, n, &a[a_offset], lda, &work[iqrf], n);
- i__2 = *n - 1;
- i__3 = *n - 1;
- dlaset_("L", &i__2, &i__3, &c_b109, &c_b109, &work[iqrf + 1], n);
- i__2 = *lwork - itemp + 1;
- dgebrd_(n, n, &work[iqrf], n, &work[id], &work[ie], &work[itauq],
- &work[itaup], &work[itemp], &i__2, info);
-
- /* Solve eigenvalue problem TGK*Z=Z*S. */
- /* (Workspace: need 14*N + 2*N*(N+1)) */
-
- itgkz = itemp;
- itemp = itgkz + *n * ((*n << 1) + 1);
- i__2 = *n << 1;
- dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
- iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
- itemp], &iwork[1], info);
-
- /* If needed, compute left singular vectors. */
-
- if (wantu) {
- j = itgkz;
- i__2 = *ns;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
- j += *n << 1;
- }
- i__2 = *m - *n;
- dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
- ldu);
-
- /* Call DORMBR to compute QB*UB. */
- /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormbr_("Q", "L", "N", n, ns, n, &work[iqrf], n, &work[itauq],
- &u[u_offset], ldu, &work[itemp], &i__2, info);
-
- /* Call DORMQR to compute Q*(QB*UB). */
- /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormqr_("L", "N", m, ns, n, &a[a_offset], lda, &work[itau], &
- u[u_offset], ldu, &work[itemp], &i__2, info);
- }
-
- /* If needed, compute right singular vectors. */
-
- if (wantvt) {
- j = itgkz + *n;
- i__2 = *ns;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
- j += *n << 1;
- }
-
- /* Call DORMBR to compute VB**T * PB**T */
- /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormbr_("P", "R", "T", ns, n, n, &work[iqrf], n, &work[itaup],
- &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
- }
- } else {
-
- /* Path 2 (M at least N, but not much larger) */
- /* Reduce A to bidiagonal form without QR decomposition */
- /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
- /* U = QB * UB; V**T = VB**T * PB**T */
-
- /* Bidiagonalize A */
- /* (Workspace: need 4*N+M, prefer 4*N+(M+N)*NB) */
-
- id = 1;
- ie = id + *n;
- itauq = ie + *n;
- itaup = itauq + *n;
- itemp = itaup + *n;
- i__2 = *lwork - itemp + 1;
- dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
- itauq], &work[itaup], &work[itemp], &i__2, info);
-
- /* Solve eigenvalue problem TGK*Z=Z*S. */
- /* (Workspace: need 14*N + 2*N*(N+1)) */
-
- itgkz = itemp;
- itemp = itgkz + *n * ((*n << 1) + 1);
- i__2 = *n << 1;
- dbdsvdx_("U", jobz, rngtgk, n, &work[id], &work[ie], vl, vu, &
- iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
- itemp], &iwork[1], info);
-
- /* If needed, compute left singular vectors. */
-
- if (wantu) {
- j = itgkz;
- i__2 = *ns;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dcopy_(n, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
- j += *n << 1;
- }
- i__2 = *m - *n;
- dlaset_("A", &i__2, ns, &c_b109, &c_b109, &u[*n + 1 + u_dim1],
- ldu);
-
- /* Call DORMBR to compute QB*UB. */
- /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[itemp], &i__2, &ierr);
- }
-
- /* If needed, compute right singular vectors. */
-
- if (wantvt) {
- j = itgkz + *n;
- i__2 = *ns;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dcopy_(n, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
- j += *n << 1;
- }
-
- /* Call DORMBR to compute VB**T * PB**T */
- /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormbr_("P", "R", "T", ns, n, n, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, &
- ierr);
- }
- }
- } else {
-
- /* A has more columns than rows. If A has sufficiently more */
- /* columns than rows, first reduce A using the LQ decomposition. */
-
- if (*n >= mnthr) {
-
- /* Path 1t (N much larger than M): */
- /* A = L * Q = ( QB * B * PB**T ) * Q */
- /* = ( QB * ( UB * S * VB**T ) * PB**T ) * Q */
- /* U = QB * UB ; V**T = VB**T * PB**T * Q */
-
- /* Compute A=L*Q */
- /* (Workspace: need 2*M, prefer M+M*NB) */
-
- itau = 1;
- itemp = itau + *m;
- i__2 = *lwork - itemp + 1;
- dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
- info);
- /* Copy L into WORK and bidiagonalize it: */
- /* (Workspace in WORK( ITEMP ): need M*M+5*N, prefer M*M+4*M+2*M*NB) */
-
- ilqf = itemp;
- id = ilqf + *m * *m;
- ie = id + *m;
- itauq = ie + *m;
- itaup = itauq + *m;
- itemp = itaup + *m;
- dlacpy_("L", m, m, &a[a_offset], lda, &work[ilqf], m);
- i__2 = *m - 1;
- i__3 = *m - 1;
- dlaset_("U", &i__2, &i__3, &c_b109, &c_b109, &work[ilqf + *m], m);
- i__2 = *lwork - itemp + 1;
- dgebrd_(m, m, &work[ilqf], m, &work[id], &work[ie], &work[itauq],
- &work[itaup], &work[itemp], &i__2, info);
-
- /* Solve eigenvalue problem TGK*Z=Z*S. */
- /* (Workspace: need 2*M*M+14*M) */
-
- itgkz = itemp;
- itemp = itgkz + *m * ((*m << 1) + 1);
- i__2 = *m << 1;
- dbdsvdx_("U", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
- iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
- itemp], &iwork[1], info);
-
- /* If needed, compute left singular vectors. */
-
- if (wantu) {
- j = itgkz;
- i__2 = *ns;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
- j += *m << 1;
- }
-
- /* Call DORMBR to compute QB*UB. */
- /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormbr_("Q", "L", "N", m, ns, m, &work[ilqf], m, &work[itauq],
- &u[u_offset], ldu, &work[itemp], &i__2, info);
- }
-
- /* If needed, compute right singular vectors. */
-
- if (wantvt) {
- j = itgkz + *m;
- i__2 = *ns;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
- j += *m << 1;
- }
- i__2 = *n - *m;
- dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) *
- vt_dim1 + 1], ldvt);
-
- /* Call DORMBR to compute (VB**T)*(PB**T) */
- /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormbr_("P", "R", "T", ns, m, m, &work[ilqf], m, &work[itaup],
- &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
-
- /* Call DORMLQ to compute ((VB**T)*(PB**T))*Q. */
- /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormlq_("R", "N", ns, n, m, &a[a_offset], lda, &work[itau], &
- vt[vt_offset], ldvt, &work[itemp], &i__2, info);
- }
- } else {
-
- /* Path 2t (N greater than M, but not much larger) */
- /* Reduce to bidiagonal form without LQ decomposition */
- /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
- /* U = QB * UB; V**T = VB**T * PB**T */
-
- /* Bidiagonalize A */
- /* (Workspace: need 4*M+N, prefer 4*M+(M+N)*NB) */
-
- id = 1;
- ie = id + *m;
- itauq = ie + *m;
- itaup = itauq + *m;
- itemp = itaup + *m;
- i__2 = *lwork - itemp + 1;
- dgebrd_(m, n, &a[a_offset], lda, &work[id], &work[ie], &work[
- itauq], &work[itaup], &work[itemp], &i__2, info);
-
- /* Solve eigenvalue problem TGK*Z=Z*S. */
- /* (Workspace: need 2*M*M+14*M) */
-
- itgkz = itemp;
- itemp = itgkz + *m * ((*m << 1) + 1);
- i__2 = *m << 1;
- dbdsvdx_("L", jobz, rngtgk, m, &work[id], &work[ie], vl, vu, &
- iltgk, &iutgk, ns, &s[1], &work[itgkz], &i__2, &work[
- itemp], &iwork[1], info);
-
- /* If needed, compute left singular vectors. */
-
- if (wantu) {
- j = itgkz;
- i__2 = *ns;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dcopy_(m, &work[j], &c__1, &u[i__ * u_dim1 + 1], &c__1);
- j += *m << 1;
- }
-
- /* Call DORMBR to compute QB*UB. */
- /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
- itauq], &u[u_offset], ldu, &work[itemp], &i__2, info);
- }
-
- /* If needed, compute right singular vectors. */
-
- if (wantvt) {
- j = itgkz + *m;
- i__2 = *ns;
- for (i__ = 1; i__ <= i__2; ++i__) {
- dcopy_(m, &work[j], &c__1, &vt[i__ + vt_dim1], ldvt);
- j += *m << 1;
- }
- i__2 = *n - *m;
- dlaset_("A", ns, &i__2, &c_b109, &c_b109, &vt[(*m + 1) *
- vt_dim1 + 1], ldvt);
-
- /* Call DORMBR to compute VB**T * PB**T */
- /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
-
- i__2 = *lwork - itemp + 1;
- dormbr_("P", "R", "T", ns, n, m, &a[a_offset], lda, &work[
- itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2,
- info);
- }
- }
- }
-
- /* Undo scaling if necessary */
-
- if (iscl == 1) {
- if (anrm > bignum) {
- dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- }
- if (anrm < smlnum) {
- dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
- minmn, info);
- }
- }
-
- /* Return optimal workspace in WORK(1) */
-
- work[1] = (doublereal) maxwrk;
-
- return;
-
- /* End of DGESVDX */
-
- } /* dgesvdx_ */
|