|
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__2 = 2;
-
- /* > \brief \b CTREVC3 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CTREVC3 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrevc3
- .f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrevc3
- .f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrevc3
- .f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
- /* LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO) */
-
- /* CHARACTER HOWMNY, SIDE */
- /* INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N */
- /* LOGICAL SELECT( * ) */
- /* REAL RWORK( * ) */
- /* COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), */
- /* $ WORK( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CTREVC3 computes some or all of the right and/or left eigenvectors of */
- /* > a complex upper triangular matrix T. */
- /* > Matrices of this type are produced by the Schur factorization of */
- /* > a complex general matrix: A = Q*T*Q**H, as computed by CHSEQR. */
- /* > */
- /* > The right eigenvector x and the left eigenvector y of T corresponding */
- /* > to an eigenvalue w are defined by: */
- /* > */
- /* > T*x = w*x, (y**H)*T = w*(y**H) */
- /* > */
- /* > where y**H denotes the conjugate transpose of the vector y. */
- /* > The eigenvalues are not input to this routine, but are read directly */
- /* > from the diagonal of T. */
- /* > */
- /* > This routine returns the matrices X and/or Y of right and left */
- /* > eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
- /* > input matrix. If Q is the unitary factor that reduces a matrix A to */
- /* > Schur form T, then Q*X and Q*Y are the matrices of right and left */
- /* > eigenvectors of A. */
- /* > */
- /* > This uses a Level 3 BLAS version of the back transformation. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] SIDE */
- /* > \verbatim */
- /* > SIDE is CHARACTER*1 */
- /* > = 'R': compute right eigenvectors only; */
- /* > = 'L': compute left eigenvectors only; */
- /* > = 'B': compute both right and left eigenvectors. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] HOWMNY */
- /* > \verbatim */
- /* > HOWMNY is CHARACTER*1 */
- /* > = 'A': compute all right and/or left eigenvectors; */
- /* > = 'B': compute all right and/or left eigenvectors, */
- /* > backtransformed using the matrices supplied in */
- /* > VR and/or VL; */
- /* > = 'S': compute selected right and/or left eigenvectors, */
- /* > as indicated by the logical array SELECT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SELECT */
- /* > \verbatim */
- /* > SELECT is LOGICAL array, dimension (N) */
- /* > If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
- /* > computed. */
- /* > The eigenvector corresponding to the j-th eigenvalue is */
- /* > computed if SELECT(j) = .TRUE.. */
- /* > Not referenced if HOWMNY = 'A' or 'B'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix T. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] T */
- /* > \verbatim */
- /* > T is COMPLEX array, dimension (LDT,N) */
- /* > The upper triangular matrix T. T is modified, but restored */
- /* > on exit. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDT */
- /* > \verbatim */
- /* > LDT is INTEGER */
- /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VL */
- /* > \verbatim */
- /* > VL is COMPLEX array, dimension (LDVL,MM) */
- /* > On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
- /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
- /* > Schur vectors returned by CHSEQR). */
- /* > On exit, if SIDE = 'L' or 'B', VL contains: */
- /* > if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
- /* > if HOWMNY = 'B', the matrix Q*Y; */
- /* > if HOWMNY = 'S', the left eigenvectors of T specified by */
- /* > SELECT, stored consecutively in the columns */
- /* > of VL, in the same order as their */
- /* > eigenvalues. */
- /* > Not referenced if SIDE = 'R'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVL */
- /* > \verbatim */
- /* > LDVL is INTEGER */
- /* > The leading dimension of the array VL. */
- /* > LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VR */
- /* > \verbatim */
- /* > VR is COMPLEX array, dimension (LDVR,MM) */
- /* > On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
- /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
- /* > Schur vectors returned by CHSEQR). */
- /* > On exit, if SIDE = 'R' or 'B', VR contains: */
- /* > if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
- /* > if HOWMNY = 'B', the matrix Q*X; */
- /* > if HOWMNY = 'S', the right eigenvectors of T specified by */
- /* > SELECT, stored consecutively in the columns */
- /* > of VR, in the same order as their */
- /* > eigenvalues. */
- /* > Not referenced if SIDE = 'L'. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVR */
- /* > \verbatim */
- /* > LDVR is INTEGER */
- /* > The leading dimension of the array VR. */
- /* > LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] MM */
- /* > \verbatim */
- /* > MM is INTEGER */
- /* > The number of columns in the arrays VL and/or VR. MM >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of columns in the arrays VL and/or VR actually */
- /* > used to store the eigenvectors. */
- /* > If HOWMNY = 'A' or 'B', M is set to N. */
- /* > Each selected eigenvector occupies one column. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LWORK */
- /* > \verbatim */
- /* > LWORK is INTEGER */
- /* > The dimension of array WORK. LWORK >= f2cmax(1,2*N). */
- /* > For optimum performance, LWORK >= N + 2*N*NB, where NB is */
- /* > the optimal blocksize. */
- /* > */
- /* > If LWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the WORK array, returns */
- /* > this value as the first entry of the WORK array, and no error */
- /* > message related to LWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is REAL array, dimension (LRWORK) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LRWORK */
- /* > \verbatim */
- /* > LRWORK is INTEGER */
- /* > The dimension of array RWORK. LRWORK >= f2cmax(1,N). */
- /* > */
- /* > If LRWORK = -1, then a workspace query is assumed; the routine */
- /* > only calculates the optimal size of the RWORK array, returns */
- /* > this value as the first entry of the RWORK array, and no error */
- /* > message related to LRWORK is issued by XERBLA. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date November 2017 */
-
- /* @generated from ztrevc3.f, fortran z -> c, Tue Apr 19 01:47:44 2016 */
-
- /* > \ingroup complexOTHERcomputational */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The algorithm used in this program is basically backward (forward) */
- /* > substitution, with scaling to make the the code robust against */
- /* > possible overflow. */
- /* > */
- /* > Each eigenvector is normalized so that the element of largest */
- /* > magnitude has magnitude 1; here the magnitude of a complex number */
- /* > (x,y) is taken to be |x| + |y|. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void ctrevc3_(char *side, char *howmny, logical *select,
- integer *n, complex *t, integer *ldt, complex *vl, integer *ldvl,
- complex *vr, integer *ldvr, integer *mm, integer *m, complex *work,
- integer *lwork, real *rwork, integer *lrwork, integer *info)
- {
- /* System generated locals */
- address a__1[2];
- integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2[2], i__3, i__4, i__5, i__6;
- real r__1, r__2, r__3;
- complex q__1, q__2;
- char ch__1[2];
-
- /* Local variables */
- logical allv;
- real unfl, ovfl, smin;
- logical over;
- integer i__, j, k;
- real scale;
- extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
- integer *, complex *, complex *, integer *, complex *, integer *,
- complex *, complex *, integer *);
- extern logical lsame_(char *, char *);
- extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
- , complex *, integer *, complex *, integer *, complex *, complex *
- , integer *);
- real remax;
- extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
- complex *, integer *);
- logical leftv, bothv, somev;
- integer nb, ii, ki;
- extern /* Subroutine */ void slabad_(real *, real *);
- integer is, iv;
- extern integer icamax_(integer *, complex *, integer *);
- extern real slamch_(char *);
- extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
- *), claset_(char *, integer *, integer *, complex *, complex *,
- complex *, integer *), clacpy_(char *, integer *, integer
- *, complex *, integer *, complex *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *, ftnlen, ftnlen);
- extern /* Subroutine */ void clatrs_(char *, char *, char *, char *,
- integer *, complex *, integer *, complex *, real *, real *,
- integer *);
- extern real scasum_(integer *, complex *, integer *);
- logical rightv;
- integer maxwrk;
- real smlnum;
- logical lquery;
- real ulp;
-
-
- /* -- LAPACK computational routine (version 3.8.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* November 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and test the input parameters */
-
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1 * 1;
- t -= t_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1 * 1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1 * 1;
- vr -= vr_offset;
- --work;
- --rwork;
-
- /* Function Body */
- bothv = lsame_(side, "B");
- rightv = lsame_(side, "R") || bothv;
- leftv = lsame_(side, "L") || bothv;
-
- allv = lsame_(howmny, "A");
- over = lsame_(howmny, "B");
- somev = lsame_(howmny, "S");
-
- /* Set M to the number of columns required to store the selected */
- /* eigenvectors. */
-
- if (somev) {
- *m = 0;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (select[j]) {
- ++(*m);
- }
- /* L10: */
- }
- } else {
- *m = *n;
- }
-
- *info = 0;
- /* Writing concatenation */
- i__2[0] = 1, a__1[0] = side;
- i__2[1] = 1, a__1[1] = howmny;
- s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
- nb = ilaenv_(&c__1, "CTREVC", ch__1, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
- ftnlen)2);
- maxwrk = *n + (*n << 1) * nb;
- work[1].r = (real) maxwrk, work[1].i = 0.f;
- rwork[1] = (real) (*n);
- lquery = *lwork == -1 || *lrwork == -1;
- if (! rightv && ! leftv) {
- *info = -1;
- } else if (! allv && ! over && ! somev) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < f2cmax(1,*n)) {
- *info = -6;
- } else if (*ldvl < 1 || leftv && *ldvl < *n) {
- *info = -8;
- } else if (*ldvr < 1 || rightv && *ldvr < *n) {
- *info = -10;
- } else if (*mm < *m) {
- *info = -11;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = 1, i__3 = *n << 1;
- if (*lwork < f2cmax(i__1,i__3) && ! lquery) {
- *info = -14;
- } else if (*lrwork < f2cmax(1,*n) && ! lquery) {
- *info = -16;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("CTREVC3", &i__1, (ftnlen)7);
- return;
- } else if (lquery) {
- return;
- }
-
- /* Quick return if possible. */
-
- if (*n == 0) {
- return;
- }
-
- /* Use blocked version of back-transformation if sufficient workspace. */
- /* Zero-out the workspace to avoid potential NaN propagation. */
-
- if (over && *lwork >= *n + (*n << 4)) {
- nb = (*lwork - *n) / (*n << 1);
- nb = f2cmin(nb,128);
- i__1 = (nb << 1) + 1;
- claset_("F", n, &i__1, &c_b1, &c_b1, &work[1], n);
- } else {
- nb = 1;
- }
-
- /* Set the constants to control overflow. */
-
- unfl = slamch_("Safe minimum");
- ovfl = 1.f / unfl;
- slabad_(&unfl, &ovfl);
- ulp = slamch_("Precision");
- smlnum = unfl * (*n / ulp);
-
- /* Store the diagonal elements of T in working array WORK. */
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__3 = i__;
- i__4 = i__ + i__ * t_dim1;
- work[i__3].r = t[i__4].r, work[i__3].i = t[i__4].i;
- /* L20: */
- }
-
- /* Compute 1-norm of each column of strictly upper triangular */
- /* part of T to control overflow in triangular solver. */
-
- rwork[1] = 0.f;
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- i__3 = j - 1;
- rwork[j] = scasum_(&i__3, &t[j * t_dim1 + 1], &c__1);
- /* L30: */
- }
-
- if (rightv) {
-
- /* ============================================================ */
- /* Compute right eigenvectors. */
-
- /* IV is index of column in current block. */
- /* Non-blocked version always uses IV=NB=1; */
- /* blocked version starts with IV=NB, goes down to 1. */
- /* (Note the "0-th" column is used to store the original diagonal.) */
- iv = nb;
- is = *m;
- for (ki = *n; ki >= 1; --ki) {
- if (somev) {
- if (! select[ki]) {
- goto L80;
- }
- }
- /* Computing MAX */
- i__1 = ki + ki * t_dim1;
- r__3 = ulp * ((r__1 = t[i__1].r, abs(r__1)) + (r__2 = r_imag(&t[
- ki + ki * t_dim1]), abs(r__2)));
- smin = f2cmax(r__3,smlnum);
-
- /* -------------------------------------------------------- */
- /* Complex right eigenvector */
-
- i__1 = ki + iv * *n;
- work[i__1].r = 1.f, work[i__1].i = 0.f;
-
- /* Form right-hand side. */
-
- i__1 = ki - 1;
- for (k = 1; k <= i__1; ++k) {
- i__3 = k + iv * *n;
- i__4 = k + ki * t_dim1;
- q__1.r = -t[i__4].r, q__1.i = -t[i__4].i;
- work[i__3].r = q__1.r, work[i__3].i = q__1.i;
- /* L40: */
- }
-
- /* Solve upper triangular system: */
- /* [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK. */
-
- i__1 = ki - 1;
- for (k = 1; k <= i__1; ++k) {
- i__3 = k + k * t_dim1;
- i__4 = k + k * t_dim1;
- i__5 = ki + ki * t_dim1;
- q__1.r = t[i__4].r - t[i__5].r, q__1.i = t[i__4].i - t[i__5]
- .i;
- t[i__3].r = q__1.r, t[i__3].i = q__1.i;
- i__3 = k + k * t_dim1;
- if ((r__1 = t[i__3].r, abs(r__1)) + (r__2 = r_imag(&t[k + k *
- t_dim1]), abs(r__2)) < smin) {
- i__4 = k + k * t_dim1;
- t[i__4].r = smin, t[i__4].i = 0.f;
- }
- /* L50: */
- }
-
- if (ki > 1) {
- i__1 = ki - 1;
- clatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
- t_offset], ldt, &work[iv * *n + 1], &scale, &rwork[1],
- info);
- i__1 = ki + iv * *n;
- work[i__1].r = scale, work[i__1].i = 0.f;
- }
-
- /* Copy the vector x or Q*x to VR and normalize. */
-
- if (! over) {
- /* ------------------------------ */
- /* no back-transform: copy x to VR and normalize. */
- ccopy_(&ki, &work[iv * *n + 1], &c__1, &vr[is * vr_dim1 + 1],
- &c__1);
-
- ii = icamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
- i__1 = ii + is * vr_dim1;
- remax = 1.f / ((r__1 = vr[i__1].r, abs(r__1)) + (r__2 =
- r_imag(&vr[ii + is * vr_dim1]), abs(r__2)));
- csscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
-
- i__1 = *n;
- for (k = ki + 1; k <= i__1; ++k) {
- i__3 = k + is * vr_dim1;
- vr[i__3].r = 0.f, vr[i__3].i = 0.f;
- /* L60: */
- }
-
- } else if (nb == 1) {
- /* ------------------------------ */
- /* version 1: back-transform each vector with GEMV, Q*x. */
- if (ki > 1) {
- i__1 = ki - 1;
- q__1.r = scale, q__1.i = 0.f;
- cgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[
- iv * *n + 1], &c__1, &q__1, &vr[ki * vr_dim1 + 1],
- &c__1);
- }
-
- ii = icamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
- i__1 = ii + ki * vr_dim1;
- remax = 1.f / ((r__1 = vr[i__1].r, abs(r__1)) + (r__2 =
- r_imag(&vr[ii + ki * vr_dim1]), abs(r__2)));
- csscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
-
- } else {
- /* ------------------------------ */
- /* version 2: back-transform block of vectors with GEMM */
- /* zero out below vector */
- i__1 = *n;
- for (k = ki + 1; k <= i__1; ++k) {
- i__3 = k + iv * *n;
- work[i__3].r = 0.f, work[i__3].i = 0.f;
- }
-
- /* Columns IV:NB of work are valid vectors. */
- /* When the number of vectors stored reaches NB, */
- /* or if this was last vector, do the GEMM */
- if (iv == 1 || ki == 1) {
- i__1 = nb - iv + 1;
- i__3 = ki + nb - iv;
- cgemm_("N", "N", n, &i__1, &i__3, &c_b2, &vr[vr_offset],
- ldvr, &work[iv * *n + 1], n, &c_b1, &work[(nb +
- iv) * *n + 1], n);
- /* normalize vectors */
- i__1 = nb;
- for (k = iv; k <= i__1; ++k) {
- ii = icamax_(n, &work[(nb + k) * *n + 1], &c__1);
- i__3 = ii + (nb + k) * *n;
- remax = 1.f / ((r__1 = work[i__3].r, abs(r__1)) + (
- r__2 = r_imag(&work[ii + (nb + k) * *n]), abs(
- r__2)));
- csscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
- }
- i__1 = nb - iv + 1;
- clacpy_("F", n, &i__1, &work[(nb + iv) * *n + 1], n, &vr[
- ki * vr_dim1 + 1], ldvr);
- iv = nb;
- } else {
- --iv;
- }
- }
-
- /* Restore the original diagonal elements of T. */
-
- i__1 = ki - 1;
- for (k = 1; k <= i__1; ++k) {
- i__3 = k + k * t_dim1;
- i__4 = k;
- t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
- /* L70: */
- }
-
- --is;
- L80:
- ;
- }
- }
-
- if (leftv) {
-
- /* ============================================================ */
- /* Compute left eigenvectors. */
-
- /* IV is index of column in current block. */
- /* Non-blocked version always uses IV=1; */
- /* blocked version starts with IV=1, goes up to NB. */
- /* (Note the "0-th" column is used to store the original diagonal.) */
- iv = 1;
- is = 1;
- i__1 = *n;
- for (ki = 1; ki <= i__1; ++ki) {
-
- if (somev) {
- if (! select[ki]) {
- goto L130;
- }
- }
- /* Computing MAX */
- i__3 = ki + ki * t_dim1;
- r__3 = ulp * ((r__1 = t[i__3].r, abs(r__1)) + (r__2 = r_imag(&t[
- ki + ki * t_dim1]), abs(r__2)));
- smin = f2cmax(r__3,smlnum);
-
- /* -------------------------------------------------------- */
- /* Complex left eigenvector */
-
- i__3 = ki + iv * *n;
- work[i__3].r = 1.f, work[i__3].i = 0.f;
-
- /* Form right-hand side. */
-
- i__3 = *n;
- for (k = ki + 1; k <= i__3; ++k) {
- i__4 = k + iv * *n;
- r_cnjg(&q__2, &t[ki + k * t_dim1]);
- q__1.r = -q__2.r, q__1.i = -q__2.i;
- work[i__4].r = q__1.r, work[i__4].i = q__1.i;
- /* L90: */
- }
-
- /* Solve conjugate-transposed triangular system: */
- /* [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK. */
-
- i__3 = *n;
- for (k = ki + 1; k <= i__3; ++k) {
- i__4 = k + k * t_dim1;
- i__5 = k + k * t_dim1;
- i__6 = ki + ki * t_dim1;
- q__1.r = t[i__5].r - t[i__6].r, q__1.i = t[i__5].i - t[i__6]
- .i;
- t[i__4].r = q__1.r, t[i__4].i = q__1.i;
- i__4 = k + k * t_dim1;
- if ((r__1 = t[i__4].r, abs(r__1)) + (r__2 = r_imag(&t[k + k *
- t_dim1]), abs(r__2)) < smin) {
- i__5 = k + k * t_dim1;
- t[i__5].r = smin, t[i__5].i = 0.f;
- }
- /* L100: */
- }
-
- if (ki < *n) {
- i__3 = *n - ki;
- clatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
- i__3, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki +
- 1 + iv * *n], &scale, &rwork[1], info);
- i__3 = ki + iv * *n;
- work[i__3].r = scale, work[i__3].i = 0.f;
- }
-
- /* Copy the vector x or Q*x to VL and normalize. */
-
- if (! over) {
- /* ------------------------------ */
- /* no back-transform: copy x to VL and normalize. */
- i__3 = *n - ki + 1;
- ccopy_(&i__3, &work[ki + iv * *n], &c__1, &vl[ki + is *
- vl_dim1], &c__1);
-
- i__3 = *n - ki + 1;
- ii = icamax_(&i__3, &vl[ki + is * vl_dim1], &c__1) + ki - 1;
- i__3 = ii + is * vl_dim1;
- remax = 1.f / ((r__1 = vl[i__3].r, abs(r__1)) + (r__2 =
- r_imag(&vl[ii + is * vl_dim1]), abs(r__2)));
- i__3 = *n - ki + 1;
- csscal_(&i__3, &remax, &vl[ki + is * vl_dim1], &c__1);
-
- i__3 = ki - 1;
- for (k = 1; k <= i__3; ++k) {
- i__4 = k + is * vl_dim1;
- vl[i__4].r = 0.f, vl[i__4].i = 0.f;
- /* L110: */
- }
-
- } else if (nb == 1) {
- /* ------------------------------ */
- /* version 1: back-transform each vector with GEMV, Q*x. */
- if (ki < *n) {
- i__3 = *n - ki;
- q__1.r = scale, q__1.i = 0.f;
- cgemv_("N", n, &i__3, &c_b2, &vl[(ki + 1) * vl_dim1 + 1],
- ldvl, &work[ki + 1 + iv * *n], &c__1, &q__1, &vl[
- ki * vl_dim1 + 1], &c__1);
- }
-
- ii = icamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
- i__3 = ii + ki * vl_dim1;
- remax = 1.f / ((r__1 = vl[i__3].r, abs(r__1)) + (r__2 =
- r_imag(&vl[ii + ki * vl_dim1]), abs(r__2)));
- csscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
-
- } else {
- /* ------------------------------ */
- /* version 2: back-transform block of vectors with GEMM */
- /* zero out above vector */
- /* could go from KI-NV+1 to KI-1 */
- i__3 = ki - 1;
- for (k = 1; k <= i__3; ++k) {
- i__4 = k + iv * *n;
- work[i__4].r = 0.f, work[i__4].i = 0.f;
- }
-
- /* Columns 1:IV of work are valid vectors. */
- /* When the number of vectors stored reaches NB, */
- /* or if this was last vector, do the GEMM */
- if (iv == nb || ki == *n) {
- i__3 = *n - ki + iv;
- cgemm_("N", "N", n, &iv, &i__3, &c_b2, &vl[(ki - iv + 1) *
- vl_dim1 + 1], ldvl, &work[ki - iv + 1 + *n], n, &
- c_b1, &work[(nb + 1) * *n + 1], n);
- /* normalize vectors */
- i__3 = iv;
- for (k = 1; k <= i__3; ++k) {
- ii = icamax_(n, &work[(nb + k) * *n + 1], &c__1);
- i__4 = ii + (nb + k) * *n;
- remax = 1.f / ((r__1 = work[i__4].r, abs(r__1)) + (
- r__2 = r_imag(&work[ii + (nb + k) * *n]), abs(
- r__2)));
- csscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
- }
- clacpy_("F", n, &iv, &work[(nb + 1) * *n + 1], n, &vl[(ki
- - iv + 1) * vl_dim1 + 1], ldvl);
- iv = 1;
- } else {
- ++iv;
- }
- }
-
- /* Restore the original diagonal elements of T. */
-
- i__3 = *n;
- for (k = ki + 1; k <= i__3; ++k) {
- i__4 = k + k * t_dim1;
- i__5 = k;
- t[i__4].r = work[i__5].r, t[i__4].i = work[i__5].i;
- /* L120: */
- }
-
- ++is;
- L130:
- ;
- }
- }
-
- return;
-
- /* End of CTREVC3 */
-
- } /* ctrevc3_ */
|