|
- *> \brief \b CTPLQT
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE CTPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK,
- * INFO )
- *
- * .. Scalar Arguments ..
- * INTEGER INFO, LDA, LDB, LDT, N, M, L, MB
- * ..
- * .. Array Arguments ..
- * COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> CTPLQT computes a blocked LQ factorization of a complex
- *> "triangular-pentagonal" matrix C, which is composed of a
- *> triangular block A and pentagonal block B, using the compact
- *> WY representation for Q.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix B, and the order of the
- *> triangular matrix A.
- *> M >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix B.
- *> N >= 0.
- *> \endverbatim
- *>
- *> \param[in] L
- *> \verbatim
- *> L is INTEGER
- *> The number of rows of the lower trapezoidal part of B.
- *> MIN(M,N) >= L >= 0. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] MB
- *> \verbatim
- *> MB is INTEGER
- *> The block size to be used in the blocked QR. M >= MB >= 1.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is COMPLEX array, dimension (LDA,M)
- *> On entry, the lower triangular M-by-M matrix A.
- *> On exit, the elements on and below the diagonal of the array
- *> contain the lower triangular matrix L.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is COMPLEX array, dimension (LDB,N)
- *> On entry, the pentagonal M-by-N matrix B. The first N-L columns
- *> are rectangular, and the last L columns are lower trapezoidal.
- *> On exit, B contains the pentagonal matrix V. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,M).
- *> \endverbatim
- *>
- *> \param[out] T
- *> \verbatim
- *> T is COMPLEX array, dimension (LDT,N)
- *> The lower triangular block reflectors stored in compact form
- *> as a sequence of upper triangular blocks. See Further Details.
- *> \endverbatim
- *>
- *> \param[in] LDT
- *> \verbatim
- *> LDT is INTEGER
- *> The leading dimension of the array T. LDT >= MB.
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is COMPLEX array, dimension (MB*M)
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup doubleOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> \verbatim
- *>
- *> The input matrix C is a M-by-(M+N) matrix
- *>
- *> C = [ A ] [ B ]
- *>
- *>
- *> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
- *> matrix consisting of a M-by-(N-L) rectangular matrix B1 on left of a M-by-L
- *> upper trapezoidal matrix B2:
- *> [ B ] = [ B1 ] [ B2 ]
- *> [ B1 ] <- M-by-(N-L) rectangular
- *> [ B2 ] <- M-by-L lower trapezoidal.
- *>
- *> The lower trapezoidal matrix B2 consists of the first L columns of a
- *> M-by-M lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0,
- *> B is rectangular M-by-N; if M=L=N, B is lower triangular.
- *>
- *> The matrix W stores the elementary reflectors H(i) in the i-th row
- *> above the diagonal (of A) in the M-by-(M+N) input matrix C
- *> [ C ] = [ A ] [ B ]
- *> [ A ] <- lower triangular M-by-M
- *> [ B ] <- M-by-N pentagonal
- *>
- *> so that W can be represented as
- *> [ W ] = [ I ] [ V ]
- *> [ I ] <- identity, M-by-M
- *> [ V ] <- M-by-N, same form as B.
- *>
- *> Thus, all of information needed for W is contained on exit in B, which
- *> we call V above. Note that V has the same form as B; that is,
- *> [ V ] = [ V1 ] [ V2 ]
- *> [ V1 ] <- M-by-(N-L) rectangular
- *> [ V2 ] <- M-by-L lower trapezoidal.
- *>
- *> The rows of V represent the vectors which define the H(i)'s.
- *>
- *> The number of blocks is B = ceiling(M/MB), where each
- *> block is of order MB except for the last block, which is of order
- *> IB = M - (M-1)*MB. For each of the B blocks, a upper triangular block
- *> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB
- *> for the last block) T's are stored in the MB-by-N matrix T as
- *>
- *> T = [T1 T2 ... TB].
- *> \endverbatim
- *>
- * =====================================================================
- SUBROUTINE CTPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK,
- $ INFO )
- *
- * -- LAPACK computational routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER INFO, LDA, LDB, LDT, N, M, L, MB
- * ..
- * .. Array Arguments ..
- COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * ..
- * .. Local Scalars ..
- INTEGER I, IB, LB, NB, IINFO
- * ..
- * .. External Subroutines ..
- EXTERNAL CTPLQT2, CTPRFB, XERBLA
- * ..
- * .. Executable Statements ..
- *
- * Test the input arguments
- *
- INFO = 0
- IF( M.LT.0 ) THEN
- INFO = -1
- ELSE IF( N.LT.0 ) THEN
- INFO = -2
- ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
- INFO = -3
- ELSE IF( MB.LT.1 .OR. (MB.GT.M .AND. M.GT.0)) THEN
- INFO = -4
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -6
- ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
- INFO = -8
- ELSE IF( LDT.LT.MB ) THEN
- INFO = -10
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'CTPLQT', -INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
- *
- DO I = 1, M, MB
- *
- * Compute the QR factorization of the current block
- *
- IB = MIN( M-I+1, MB )
- NB = MIN( N-L+I+IB-1, N )
- IF( I.GE.L ) THEN
- LB = 0
- ELSE
- LB = NB-N+L-I+1
- END IF
- *
- CALL CTPLQT2( IB, NB, LB, A(I,I), LDA, B( I, 1 ), LDB,
- $ T(1, I ), LDT, IINFO )
- *
- * Update by applying H**T to B(I+IB:M,:) from the right
- *
- IF( I+IB.LE.M ) THEN
- CALL CTPRFB( 'R', 'N', 'F', 'R', M-I-IB+1, NB, IB, LB,
- $ B( I, 1 ), LDB, T( 1, I ), LDT,
- $ A( I+IB, I ), LDA, B( I+IB, 1 ), LDB,
- $ WORK, M-I-IB+1)
- END IF
- END DO
- RETURN
- *
- * End of CTPLQT
- *
- END
|